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STRUCTURALLY-HYPERBOLIC ALGEBRAS DUAL TO

THE CAYLEY-DICKSON AND CLIFFORD ALGEBRAS

OR NESTED SNAKES BITE THEIR TAILS

DIANE G. DEMERS

For Elaine Yaw in honor of friendship

Abstract. The imaginary unit i of C, the complex numbers, squares to −1;
while the imaginary unit j of D, the double numbers (also called dual or split
complex numbers), squares to +1. L.H. Kauffman expresses the double num-
ber product in terms of the complex number product and vice-versa with two,
formally identical, dualizing formulas. The usual sequence of (structurally-
elliptic) Cayley-Dickson algebras is R, C, H, ..., of which Hamilton’s quater-
nions H generalize to the split quaternions �H. Kauffman’s expressions are the
key to recursively defining the dual sequence of structurally-hyperbolic Cayley-
Dickson algebras, R, D, M, ..., of which Macfarlane’s hyperbolic quaternions M

generalize to the split hyperbolic quaternions �M. Previously, the structurally-
hyperbolic Cayley-Dickson algebras were defined by simply inverting the signs
of the squares of the imaginary units of the structurally-elliptic Cayley-Dickson
algebras from −1 to +1. Using the dual algebras C, D, H, �H, M, �M, and their
further generalizations, we classify the Clifford algebras and their dual orienta-
tion congruent algebras (Clifford-like, noncommutative Jordan algebras with
physical applications) by their representations as tensor products of algebras.
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1. Introduction

In this paper we develop, for the first time, the ungeneralized, generalized, and ul-
trageneralized, structurally-hyperbolic Cayley-Dickson algebras directly as Cayley-
Dickson algebras, that is, in terms of a recursive Cayley-Dickson type product
formula. We also describe the representations of the orientation congruent alge-

bras OCp,q by the tensor products of the ultrageneralized, structurally-hyperbolic
Cayley-Dickson algebras of two and four dimensions. These representations are
dual to the standard representations of the Clifford algebras Cℓp,q by the tensor
products of the generalized (structurally-elliptic) Cayley-Dickson algebras of two
and four dimensions, namely, the complex numbers C, the (ungeneralized) quater-
nions H, the double numbers D (under the guise of the double rings R ⊕ R and
H⊕H), and the split quaternions (under the guise of algebras of 22m × 22m matri-
ces, m ≥ 0, over the algebras of the double rings R⊕R and H⊕H), [24, Ch. 16], [33],
[34], [35, Ch. 15], [36]. However, while just two (structurally-elliptic) quaternion
algebras are sufficient as factor algebras to represent the Clifford algebras, several
more ultrageneralized structurally-hyperbolic quaternion algebras are required as
factor algebras to represent the orientation congruent algebras.

The orientation congruent (OC) algebras are Clifford-like, noncommutative Jor-
dan algebras that are ingredients in the fundamental reformulation of differential
geometry. However, the use of the orientation congruent algebras becomes neces-
sary only when twisted differential forms are pulled back between manifolds whose
dimensions differ by an odd integer. The required reformulation of Cartan’s exte-
rior calculus in terms of OC algebras resolves some minor dilemmas or controversies
that have been reported in the engineering [54, p. 332, fn.] and physics literature
G. Marmo et al. [28, 29, 49]. These difficulties involve certain sign ambiguities or
discrepancies that are due to the conflicting orientations assigned to twisted differ-
ential forms by the usual orientation rules for pull back and integration. However,
the details of this application are beyond the scope of this paper.

The ungeneralized structurally-hyperbolic Cayley-Dickson algebras are hyper-

bolic because their (i.e., standard basis vectors other than 1) square to +1, in
contradistinction to the imaginary units of the traditional Cayley-Dickson algebras
which square to −1. As such we refer to the traditional Cayley-Dickson algebras
as structurally-elliptic. Our use of the term hyperbolic is natural, but archaic, since
it dates to Alexander Macfarlane (1851-1913) in 1900 [26, 7, 9, 55]. Unfortunately,
as discussed in detail shortly, this usage conflicts with another standard one, which
is one of two reasons why we have added the modifier structurally.

Similarly, the orientation congruent algebras OCn of a Euclidean bilinear form
(or metric) are hyperbolic because under their products the members of an orthonor-
mal set of standard basis vectors for the underlying vector space square to +1, in
contradistinction to the dually defined Clifford algebras Cℓ0,n under whose products
these basis vectors square to −1. In addition, and even more critically, under the
product of any orientation congruent algebra OCn all basis blades (i.e., the 2n ele-
ments of the basis of OCn as a linear space that are among the exterior products of
all combinations of standard basis vectors and 1) square to +1, in contradistinction
to their behavior under the product of any Clifford algebra Cℓ0,n where, in general,
they may square to either +1 or −1. This further distinction is described by the
use of the modifier structurally.
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Both the orientation congruent and the Clifford algebras are Clifford-like, the
Clifford algebras trivially so. We define an algebra A to be Clifford-like if all
A-products of basis blades differ by at most a sign from those of some Clifford
algebras of a nondegenerate quadratic form. In general, an OC algebra of some
nondegenerate quadratic form over R is not isomorphic to some Clifford algebra
of a general nondegenerate quadratic form over R. This is evidenced by their
distinction in terms of the signs of products of basis blades described in the previous
paragraph. Although, the orientation congruent and Clifford algebras differ in their
basic definitions and are not, in general, isomorphic when defined over R, it is
unclear whether, in general, an OC algebra of some nondegenerate quadratic form
over R is also not isomorphic to some Clifford algebra of a general nondegenerate
quadratic form over a general field.

Further motivation for the use of the modifier structurally arises from the possible
confusion over the use of the term hyperbolic by other contributors to the mathe-
matical and physical literature to describe the structurally-elliptic Cayley-Dickson
algebras that in this paper we prefer to call split. Our usage of the term split in
this way is in accordance with previous usage [59, 58]. The split structurally-elliptic
and -hyperbolic CD algebras are defined shortly below.

Now that we have emphasized the distinction between these new systems and
the traditional ones by employing the modifier structurally, we will generally stop
using the cumbersome full phrases structurally-elliptic and structurally-hyperbolic

in favor of the shorter terms elliptic and hyperbolic. Throughout this paper we may
also abbreviate the phrase Cayley-Dickson to CD. Thus, in particular, the phrases
elliptic Cayley-Dickson and hyperbolic Cayley-Dickson may be shortened to elliptic

CD and hyperbolic CD, respectively.
Having discussed the elliptic and hyperbolic Cayley-Dickson algebras in terms

of their multiplication tables, we now turn to their more fundamental definition in
terms of a sequence of algebras with a kind of Cayley-Dickson recursive product
formula. Both the usual elliptic Cayley-Dickson algebras and the new hyperbolic
ones may be constructed by a doubling process that is identical up to the last step
of specifying the formula for the product. The product formula for the elliptic
Cayley-Dickson algebras is given shortly below. However, a description of the
product formula for the hyperbolic Cayley-Dickson algebras is deferred to Section
5.

Both the elliptic and hyperbolic Cayley-Dickson algebra sequences start at level
0 with the real number field R. (In a more general formulation than is required
in this introductory paper, the level 0 algebra can be any nonassociative ring [48,
p. 9].) Then the numbers of a higher level algebra of either sequence are constructed
as ordered pairs of numbers from the algebra just one level below it.

Addition of these pairs is defined as the usual componentwise addition in which
the first (resp., second) component of the sum is the sum of the first (resp., second)
components of the summands. Multiplication of these pairs is defined by a product
formula that is valid for all levels of the construction.

The product formula uses the operation of conjugation which is written with an
overline as in y. Conjugation is an anti-involution, meaning that y ± z = y ± z,
y = y and y ∗ z = z ∗ y. At level 0, conjugation is defined as the identity operation:
y := y, for all y ∈ R. At higher levels, conjugation is defined recursively by the
equation (w, x) := (w,−x), in which the conjugation operation on the right hand
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side is that of the algebra one level lower than that of the left hand side. The above
description of conjugation is based on that of Warren D. Smith [48, p. 9] and Pertti
Lounesto [24, pp. 285]

The definition of the ungeneralized CD algebras admits a natural generalization
by introducing a parameter γ ∈ R into the product formula [24, p. 285], [47, pp. 93
f., 201]. The number of such parameters required to define a generalized CD algebra
at level n is then just n. Note that the product formula for the ungeneralized
elliptic Cayley-Dickson algebras (and the generalized version derived form it) may
be expressed in several different, but equivalent, ways [56, fn. 1]; the formula we
present next is due to Lounesto. The product in the generalized elliptic case is
defined by

Definition 1.1 (The Generalized Elliptic Cayley-Dickson Algebra Product For-
mula [24, p. 285]).

(1.1) (w1, x1) ∗ (w2, x2) :=
(

w1w2 + γx2x1, x2w1 + x1w2

)

.

Any generalized n-level elliptic Cayley-Dickson algebra may be written in the
form ECD(γ1, γ2, . . . γn) since it is completely specified by the above Equation
(1.1) and the values of the n parameters [24, p. 285]. In the elliptic case and up
to the octonions at level 3, we have that i2 = j 1 = γ1, j 2 = γ2, k2 = −γ1γ2, and
l2 = γ3. As fully described later in this paper, in the dual hyperbolic case, these
equations become j2 = jj1 = γ1, jj

2 = γ2, lk
2 = γ1γ2, and ll2 = γ3.

For the generalized elliptic n-level Cayley-Dickson algebras, when γi = −1 for
all i = 1, . . . , n we recover the ungeneralized elliptic n-level CD algebras from this
definition. Dually, for the generalized hyperbolic n-level Cayley-Dickson algebras
as defined later, when γi = +1 for all i = 1, . . . , n we recover the ungeneralized
hyperbolic n-level CD algebras.

A couple of standard choices for the parameter γ, which are dual to each other,
occur so frequently in this paper that they merit their own definition and description
as split.

Definition 1.2 (The Split Elliptic and Hyperbolic Cayley-Dickson Algebras). We
define the split elliptic Cayley-Dickson algebras to be those generalized elliptic
Cayley-Dickson algebras generated by setting the highest level parameter γn in
an n-level algebra to be +1 and all other parameters to be −1, as well as all gener-
alized elliptic Cayley-Dickson algebras isomorphic to them. Dually, we define the
split hyperbolic Cayley-Dickson algebras to be those generalized hyperbolic Cayley-
Dickson algebras generated by setting the highest level parameter γn in an n-level
algebra to be −1 and all other parameters to be +1, as well as all generalized
hyperbolic Cayley-Dickson algebras isomorphic to them.

As shown in Table 2 of D. Lambert and M. Kibler’s paper [22, p. 313], all choices
other than γ1 = γ2 = −1 for the generalized elliptic quaternions and γ1 = γ2 =
γ3 = −1 for the generalized elliptic octonions give algebras isomorphic to the split
elliptic quaternions and split elliptic octonions, respectively.

In this paper we explicitly construct the first three levels of elliptic Cayley-
Dickson algebras and their hyperbolic counterparts, all in both ungeneralized and
split form, and the fourth level in only its ungeneralized form. The names and
symbols we use for them are given in the following Table 1.1.

As mentioned above, in the elliptic case, if the γ parameters are all chosen in the
standard way to be −1, we get the traditional Cayley-Dickson algebras which in our
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language are the (ungeneralized) elliptic Cayley-Dickson algebras. The first four of
these are the real number field R, the complex number field C = ECD(−1) in Table
1.2, the elliptic quaternion ring H = ECD(−1,−1) of Sir William Rowan Hamilton
(1805–1865) in Table 1.4, and the elliptic octonion ring (or elliptic octaves) O =
ECD(−1,−1,−1) of Arthur Cayley (1821–1895) and John Thomas Graves (1806–
1870) in Table 1.8.

Also in the elliptic case, if the parameters are all chosen in the way described
three paragraphs above, we get the split Cayley-Dickson algebras. The first four
of the split Cayley-Dickson algebras are the real number field R, the split complex

number ring �C = ECD(+1) which is isomorphic to the double number ring D in
Table 1.3, the split quaternion ring �H = ECD(−1, +1) in Table 1.6, and the split

octonion ring (or octaves) �O = ECD(−1,−1, +1) (not shown).
As mentioned above, dually, in the hyperbolic case, if the γ parameters are

all chosen in the standard way to be +1, we get the (ungeneralized) hyperbolic
Cayley-Dickson algebras. The first four of these are the real number field R, the
double number ring D = HCD(+1) in Table 1.3, the hyperbolic quaternion ring

M = HCD(+1, +1) of Alexander Macfarlane (1851–1913) in Table 1.5, and the
hyperbolic octonion ring G = HCD(+1, +1, +1) in Table 1.9.

Also, dually, in the hyperbolic case, if the parameters are all chosen in the
way described five paragraphs above, we get the split hyperbolic Cayley-Dickson
algebras. The first four of the split hyperbolic Cayley-Dickson algebras are the real

number field R, the split double number field �D = HCD(−1) which is isomorphic
to the complex number algebra C in Table 1.2, the split hyperbolic quaternion

ring �M = HCD(+1,−1) in Table 1.7, and the split hyperbolic octonion ring �G =
HCD(+1, +1,−1) (not shown).

Table 1.1. The names and symbols used in this paper for the first
four levels of the generalized elliptic and hyperbolic Cayley-Dickson
algebras.

Elliptic CD Algebras Hyperbolic CD Algebras
Level Name Sym. Name Sym.

0 real numbers R real numbers R

1 complex numbers C double numbers D

1 split complex numbers �C split double numbers �D

2 elliptic quaternions H hyperbolic quaternions M

2 split elliptic quaternions �H split hyperbolic quaternions �M

3 elliptic octonions O hyperbolic octonions G

3 split elliptic octonions �O split hyperbolic octonions �G

In this and the next two paragraphs we discuss our choice of names and symbols
for the algebras listed in Table 1.1. The symbols R, C, H, and O are very standard
in the literature. The symbol D for the ring of double numbers is also frequently
found in publications. According to the survey paper by Vasile Cruceanu, Pedro
Fortuny Ayuso, and Pedro Mart́ınez Gadea [5, p. 87], the double numbers were
first described by John Thomas Graves in 1845 [12]. Although, the name double

numbers is one of many (including hyperbolic complex numbers) that appear in the
literature [57]. In particular, in applications to differential geometry, the double
numbers are also known as the biparacomplex [3] or paracomplex numbers [5, p. 87].
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The designation double numbers is used as one of two alternatives in a book of the
Russian-American mathematician Boris A. Rosenfeld [40, p. 30] and as the standard
in the English translations of the Russian language works of I. M. Yaglom [60, 61].
Following Yaglom, we have chosen the name double numbers as our standard.

The designation split-complex numbers is also used for D in some books by Maks
A. Akivis and Boris A. Rosenfeld [1, p. 66] [39, pp. 363, 396, 399] [40, p. 30].
Later, in Section 6, to emphasize the dual relationships between the algebra tensor
product representations of the Clifford and orientation congruent algebras, we also
apply the name split complex numbers and our own symbol, the backslashed �C to
the double number ring D. In general, throughout this paper, superimposition of a
backslash on some symbol for a Cayley-Dickson algebra indicates the split form of
that algebra.

In the context of his work, Kauffman [15, 16] very naturally calls D the dual

numbers. He explores many interesting dualities between these two number sys-
tems that are more subtle than simply having imaginary units with oppositely
signed squares, but which stem from this fact. However, we will stay with the ter-
minology of Rosenfeld and Yaglom who apply the name dual numbers to the ring
of hypercomplex numbers with imaginary unit ǫ such that ǫ2 = 0.

The symbol H was chosen, of course, after the name of Sir William Rowan
Hamilton, who first published this system. Similarly, it is appropriate to choose
M as the symbol for the hyperbolic quaternions after Alexander Macfarlane who
seems to have coined the term as the first to publicly announce his research in 1900
[26]. (For related, earlier work by Macfarlane see [25]).

The split elliptic quaternions �H were first described by James Cockle (1819-1895)
[8] in 1849 under the name coquaternions [8, 59]. In applications to differential ge-
ometry, they are also known as the paraquaternions [14, p. 222] or para-quaternions

[6, 59]. In the physics literature, the term Gödel quaternions is common [22, p. 312].
This physics terminology is apparently derived from Kurt Gödel’s application of the
split elliptic quaternions (under the name hyperbolic quaternions) to cosmology [11,
p. 1416, fn. 14]. Note that there exists a ring isomorphism �H ∼= Mat(R, 2) [59].

I more arbitrarily designate G as the symbol for the hyperbolic octonions to
honor the same John Thomas Graves mentioned earlier as the first to publish on
the double numbers. He was also the first to discover the elliptic octonions, but not
the first to publish [2, pp. 146 f.] [23, p. 5]. This was due to the Hamilton’s tardiness
in communicating Graves’ results to a journal. Unfortunately, since Arthur Cayley’s
paper [4] on the subject was thus published before Graves’ [12], the elliptic octonions
are frequently called the Cayley numbers in the literature [2, pp. 146 f.]. Therefore,
to give some due to Graves, who missed his chance with the elliptic octonions, I
use G as the symbol for the hyperbolic octonions.

In both the elliptic and hyperbolic cases noncommuting elements first appear
at level 2 of the CD algebras with the quaternions. However, while nonassociative
elements first appear at level 3 of the elliptic CD algebras with the elliptic octonions,
they appear earlier at level 2 of the hyperbolic CD algebras with the hyperbolic
quaternions.

Macfarlane discussed the hyperbolic quaternions as an algebra for analyzing the
geometry of the two-sheeted hyperboloid just as the elliptic quaternions may be
used to analyze the geometry of the sphere [26, 7, 9, 55]. However, his original
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motivation for investigating them appears to be to compare and reconcile the dif-
ferences between the then competing systems of algebra and calculus based on
Gibbs’ vectors vs. Hamilton’s quaternions.

My motivation for investigating the hyperbolic quaternions stems from their
natural relationship to the orientation congruent algebra. This relationship parallels
to some extent that of the elliptic quaternions to the Clifford algebra. For example,
the algebra M is isomorphic to the orientation congruent algebras OC2 just as the
algebra H is isomorphic to the Clifford algebra Cℓ0,2. Also note that the ring D is
isomorphic to both OC1 and Cℓ1, while the field C is isomorphic to both OC0,1 and
Cℓ0,1.

The relationships mentioned in the last paragraph are reflections of another
parallel between the relationships of the hyperbolic CD algebras to the orientation
congruent algebras and the elliptic CD algebras to Clifford algebras. Namely, both
the ungeneralized hyperbolic quaternions and split hyperbolic quaternions play a
key role in constructing algebra tensor product representations for the orientation
congruent algebras of various signatures just as both the ungeneralized elliptic
quaternions and split elliptic quaternions do for the Clifford algebras. Although,
the role of the split elliptic quaternions is disguised in the usual presentations
by appearing as 22m × 22m matrices for nonnegative m with entries from C, R,
2R = R ⊕ R ∼= D, H, or 2H = H ⊕ H =∼= D ⊗ H, [24, Ch. 16], [33], [34], [35,
Ch. 15], [36]. The double and complex numbers are common to the representation
theory of both the orientation congruent and Clifford algebras as tensor products
of algebras. However, although the factorization of the Clifford algebras into tensor
products of algebras requires only the four component algebras C, D, H, and �H,
the factorization of the orientation congruent algebras requires several even more
generalized (ultrageneralized) hyperbolic quaternion algebras. This is discussed
further in Section 5.

In this paper I make a first attempt to describe some matrix representations
for the orientation congruent algebras. These matrix representations are based on
the factorization of the OC algebras into tensor products of algebras. Of course,
the product used with these matrices cannot be the usual associative one. We
investigate the matrix representation of one OC algebra later in Section 4.

The analogy between the relationship of the hyperbolic CD algebras to the ori-
entation congruent algebras and the relationship of the elliptic CD algebras to the
Clifford algebras also extends to the next higher level, namely, that of the octo-
nions. At this level an algebra isomorphism is not possible, but the elliptic octonion
product may be calculated in terms of the Clifford product. In chapter 23 of his
book [24], Lounesto gives three ways to do this, one of which has no parallel in
the hyperbolic case, but the other two do. Unfortunately, I do not have time to
elaborate here.

There are at least three physical applications of the algebra of Macfarlane’s hy-
perbolic quaternions. The first physical application is to special relativity where
the algebra of hyperbolic quaternions may be considered the natural generaliza-
tion to four dimensions of the double numbers (which nicely formalize the Lorentz
transformations two-dimensional spacetime [37, 38]). Thus, the complete group of
four-dimensional Lorentz transformations may be expressed in terms of the hyper-
bolic quaternions. (Although, because of the nonassociativity of M, Joe Rooney
rejected this application [38, p. 436].) Hints of how to do this are found in the
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webpages [9] and [55]. However, I have yet to find the explicit formulas in any
source, formal or informal, and so have had to work them out myself. It turns out
that certain interesting algebraic twists are necessitated by the nonassociativity of
M.

An intriguing reciprocal relationship also exists between the roles of the unit
imaginary number i when the elliptic vs. the hyperbolic quaternions are used to
express the Lorentz transformations. In both systems i is taken as commuting with
all other quantities. (Thus, this i cannot be identified with the quaternions i , j ,
or k , although these three numbers as well as i square to −1). And, whereas, the
elliptic quaternions with real coefficients are naturally suited to describe Euclidean
rotations but require an imaginary coefficient to describe boosts, the hyperbolic
quaternions with real coefficients are naturally suited to describe boosts and require
an imaginary coefficient to describe rotations. Unfortunately, I do not have time
to present more details here.

The role of the nonassociative hyperbolic quaternions in special relativity and
their relationship to the orientation congruent algebra suggests a possible con-
nection of both these algebras to Abraham A. Ungar’s work. Ungar’s gyrogroup

approach to special relativity and hyperbolic geometry derives from his analysis of
the essential nonassociativity of the finite Thomas or Wigner rotation. It is ex-
pounded in his books [52, 53] (and many papers, not cited here). Specifically, it
may be possible to derive the Thomas or Wigner rotation in another, or even more
direct way, by using the nonassociative hyperbolic quaternions. However, these
connections cannot be pursued further at this time.

The second physical application of the hyperbolic quaternions is to electromag-
netism. However, I have only seen this as the abstract [10] of a contribution by
the authors Suleyman Demir, Murat Tanişh, and Nuray Candemir to a recently
held conference. According to this abstract: “Maxwell’s equations and relevant
field equations are investigated with hyperbolic quaternions, and these equations
have been given in compact, simpler and elegant forms. Derived equations are com-
pared with their vectorial, complex quaternionic, dual quaternionic and octonionic
representations, as well.”

The third physical application of the hyperbolic quaternions is to quantum me-
chanics. Macfarlane’s algebra M was used by Dionisios Margetis and Manoussos
G. Grillakis in their paper [27] to describe the loss of a pure state in the memory of
a quantum computer. However, I have not confirmed the results of these authors
by a careful reading of their paper. Some other work on the hyperbolic approach
to quantum mechanics that is presented by Stefan Ulrych also appears promising
[50, 51]. However, the possible application of the concepts of the present paper to
quantum theory awaits further investigation.

The orientation congruent algebra arose itself from an application in mathemat-
ical physics for which it has been named. That is, the OC algebra can be used to
represent odd (or twisted) differential forms and calculate their exterior products
and derivatives. It has long been known that odd differential forms are naturally
endowed with the two transversely oriented parts: a generalized sign and a gen-

eralized magnitude. That is clear from the early illustrations in Schouten’s books
and papers, [43, p. 22], [46], [44, p. 28], and [45, pp. 31–33, 55]. (See also Salgado
[41, 42].) But it takes the orientation congruent algebra to realize this graphical
truism as an algebraic system.
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There are easier ways to algebraically represent odd differential forms. However,
the orientation congruent algebra approach is necessary if odd forms are pulled
back between manifolds with an odd difference in dimensions. In this case the usual
analyses generally lead to a sign discrepancy. Physical examples in which this type
of sign confusion arises include the electromagnetic boundary conditions discussed
by K. Warnick et al. [54, p. 332, fn.], as well as the apparently inconsistent parities
of electromagnetic quantities due to space-time vs. space orientations discussed by
G. Marmo et al. [28, 29].

In all these applications the orientation congruent algebra plays a intermediate
role in the calculation. Sometimes its nonassociativity is crucial, as when pulling
back twisted forms between manifolds whose dimensions differ by an odd integer.
On the other hand, sometimes it is not, as when performing a boost which can also
be done with the associative matrix product between matrices representing linear
transformations.

The following list gives the names and symbols for some of the primary algebras
used in this paper along with their standard basis elements.

The complex number field, C: 1, i

The split complex number ring, �C: (�C is isomorphic to D)
The double number ring, D: 1, j

The split double number field, �D: (�D is isomorphic to C)
Hamilton’s elliptic quaternions, H: 1, i , j , k

The split elliptic quaternions, �H: 1, ri , rj , rk

Macfarlane’s hyperbolic quaternions, M: 1, ii,jj, lk

The split hyperbolic quaternions, �M: 1,rii, rjj, rlk

The elliptic octonions, O: 1, i , j , k , l , il , jl , kl

The split elliptic octonions, �O: 1, ri , rj , rk , rl , ri rl , rj rl , rk rl

The hyperbolic octonions, G: 1, ii,jj, lk, ll, iill,jjll, lkll

The split hyperbolic octonions, �G: 1,rii, rjj, rlk, rll,riirll, rjjrll, rlkrll

The Clifford algebras, Cℓp,q: 1, e1, e2, . . . , e12, e31, . . . , e12...p+q

The orientation congruent algebras, OCp,q: 1, e1, e2, . . . , e12, e31, . . . ,

e12...p+q

The multiplication tables for most of these algebras follow. Although these tables
take up several pages, one of the best ways to understand an algebra is to examine
its multiplication table. And, although the arrangement and choice of some of the
standard elements in these tables may be somewhat unconventional, they are very
suitable to our investigations.
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Table 1.2. The multiplication table for the field C of the usual
complex numbers. The imaginary unit is i. The complex number
field is isomorphic to the Clifford algebra Cℓ0,1, the orientation
congruent algebra OC0,1, and the split double number field �D . The
product of C is symbolized as ∗. It is uncircled to indicate duality
with the product symbol ⊛ of Table 1.3.

b

a ∗ b 1 i

1 1 i
a

i i −1

Table 1.3. The multiplication table for the ring D of double or
split complex numbers. The imaginary unit is j. The double num-
ber ring is isomorphic to the Clifford algebra Cℓ1, the orientation
congruent algebra OC1, and the split complex number ring �C . The
product of D is symbolized as ⊛. It is circled to indicate duality
with the product symbol ∗ of Table 1.2.

b

a ⊛ b 1 j

1 1 j
a

j j 1
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Table 1.4. The multiplication table for the algebra H of Hamil-
ton’s elliptic quaternions. It is isomorphic to the Clifford algebra
Cℓ0,2. The product of H is symbolized as ∗. It is uncircled to
indicate duality with the product symbol ⊛ of Table 1.5.

b

a ∗ b 1 i j k

1 1 i j k

i i −1 k −j
a

j j −k −1 i

k k j −i −1

Table 1.5. The multiplication table for the algebra M of Macfar-
lane’s hyperbolic quaternions. It is isomorphic to the orientation
congruent algebra OC2. The product of M is symbolized as ⊛. It
is circled to indicate duality with the product symbol ∗ of Table
1.4.

b

a ⊛ b 1 ii jj lk

1 1 ii jj lk

ii ii 1 lk −jj
a

jj jj −lk 1 ii

lk lk jj −ii 1
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Table 1.6. The multiplication table for the algebra �H of split
elliptic quaternions. It is isomorphic to the algebras Mat(R, 2),
Cℓ1,1, and Cℓ2. The product of �H is symbolized as −−∗ . It is uncircled
to indicate duality with the product symbol −−⊛ of Table 1.7. The
products in red cells are signed oppositely to those in Table 1.4 for
Hamilton’s (non-split) elliptic quaternions.

b

a−−∗ b 1 ri rj rk

1 1 ri rj rk

ri ri −1 rk −rj
a

rj rj −rk 1 −ri

rk rk rj ri 1

Table 1.7. The multiplication table for the algebra �M of split hy-
perbolic quaternions. It is isomorphic to the algebras HMat(D, 2),
OC1,1, and OC0,2. The product of �M is symbolized as −−⊛ . It is cir-
cled to indicate duality with the product symbol −−∗ of Table 1.6.
The products in red cells are signed oppositely to those in Table
1.5 for Macfarlane’s (non-split) hyperbolic quaternions.

b

a−−⊛b 1 rii rjj rlk

1 1 rii rjj rlk

rii rii 1 rlk −rjj
a

rjj rjj −rlk −1 −rii

rlk rlk rjj rii −1
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Table 1.8. The multiplication table for the algebra O of Cayley-
Graves elliptic octonions. The factors are in reflected complemen-
tary order. The product of O is symbolized as ∗. It is uncircled to
indicate duality with the product symbol ⊛ of Table 1.9.

b

a ∗ b 1 i j k kl jl il l

1 1 i j k kl jl il l

i i −1 k −j jl −kl −l il

j j −k −1 i −il −l kl jl

k k j −i −1 −l il −jl kl
a

kl kl −jl il l −1 i −j −k

jl jl kl l −il −i −1 k −j

il il l −kl jl j −k −1 −i

l l −il −jl −kl k j i −1

Table 1.9. The multiplication table for the algebra G of hyper-
bolic octonions. The factors are in reflected complementary order.
The product of G is symbolized as ⊛. It is circled to indicate
duality with the product symbol ∗ of Table 1.8.

b

a ⊛ b 1 ii jj lk lkll jjll iill ll

1 1 ii jj lk lkll jjll iill ll

ii ii 1 lk −jj jjll −lkll −ll iill

jj jj −lk 1 ii −iill −ll lkll jjll

lk lk jj −ii 1 −ll iill −jjll lkll
a

lkll lkll −jjll iill ll 1 ii −jj −lk

jjll jjll lkll ll −iill −ii 1 lk −jj

iill iill ll −lkll jjll jj −lk 1 −ii

ll ll −iill −jjll −lkll lk jj ii 1
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Table 1.10. The multiplication table for the Clifford algebra Cℓ3.
The factors are in reflected, complementary grade order with in-
dices in orientation congruent order.

b

a ◦ b 1 e1 e2 e3 e12 e31 e23 I

1 1 e1 e2 e3 e12 e31 e23 I

e1 e1 1 e12 −e31 e2 −e3 I e23

e2 e2 −e12 1 e23 −e1 I e3 e31

e3 e3 e31 −e23 1 I e1 −e2 e12
a

e12 e12 −e2 e1 I −1 e23 −e31 −e3

e31 e31 e3 I −e1 −e23 −1 e12 −e2

e23 e23 I −e3 e2 e31 −e12 −1 −e1

I I e23 e31 e12 −e3 −e2 −e1 −1

Table 1.11. The multiplication table for the orientation congru-
ent algebra OC3. The factors and indices are ordered as in Table
1.10 above. Red cell entries are signed oppositely to those in Table
1.10.

b

a ⊚ b 1 e1 e2 e3 e12 e31 e23 Ω

1 1 e1 e2 e3 e12 e31 e23 Ω

e1 e1 1 e12 −e31 −e2 e3 Ω e23

e2 e2 −e12 1 e23 e1 Ω −e3 e31

e3 e3 e31 −e23 1 Ω −e1 e2 e12
a

e12 e12 e2 −e1 Ω 1 −e23 e31 e3

e31 e31 −e3 Ω e1 e23 1 −e12 e2

e23 e23 Ω e3 −e2 −e31 e12 1 e1

Ω Ω e23 e31 e12 e3 e2 e1 1
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2. The Kauffman Product Duality Theorems

This may seem to be a rather complicated route to i2 = −1, but it
is the point at which the snake bites its tail: As the next lemma
shows, each multiplication is expressed in terms of the other by the
same formula!

Louis H. Kauffman [15, p. 210]

Some results of Louis H. Kauffman’s paper Complex Numbers and Algebraic

Logic [15] are the key to this section, which, in turn, forms the basis for the next
three sections. In this paper, Kauffman presents the two complex number and
double number product duality formulas, one in his Lemma 2.2 and the other, its
dual version, slightly preceding it. These formulas of Kauffman are the first step
toward defining the hyperbolic Cayley-Dickson algebras exactly as Cayley-Dickson
algebras, that is, through a recursive product of number pairs from the next lower
level.

In turn, the hyperbolic CD algebras are the key to the matrix representation
of the orientation congruent algebra, and also to the duality classification of the
Clifford and orientation congruent algebras as dual Clifford-like algebras, the former
algebra being elliptic, and the latter, hyperbolic. But that is the subject of Section
6.

Lemma 2.1 below contains Kauffman’s original product duality formulas which
apply only to the algebras at level 1 of the elliptic and hyperbolic Cayley-Dickson
sequences, the complex and dual number algebras, C and D. Although Kauffman’s
original formulas apply at level 1 only, in this paper we use the phrase Kauffman

product duality generically for the analogous relationship of equality between the
product of one hyperbolic (elliptic) Cayley-Dickson algebra to an expression writ-
ten in terms of the product of its dual elliptic (resp., hyperbolic) Cayley-Dickson
algebra.

In the Equations (2.1) of Lemma 2.1 Kauffman’s original product duality for-
mulas are rewritten in a notation consistent with the conventions of this paper in
which, generally, a symbol that is circled indicates a hyperbolic algebra product,
while the same symbol without a circle indicates the corresponding elliptic algebra
product. Thus, in Equations (2.1), α ⊛ β is the double number product of α and
β with multiplication table, Table 1.3, and α ∗ β is the familiar complex number
product of α and β with multiplication table, Table 1.2. The overline indicates
complex or double number conjugation.

Lemma 2.1 (Duality of the Complex and Double Number Algebras).

α ⊛ β =
1

2

(

α ∗ β + α ∗ β + α ∗ β − α ∗ β
)

(2.1a)

α ∗ β =
1

2

(

α ⊛ β + α ⊛ β + α ⊛ β − α ⊛ β
)

(2.1b)

Proof. In Table 2.1 we prove Kauffman’s original product duality formulas for the
complex and double numbers by straightforward calculation. In fact, we prove both
formulas, which are duals of each other, simultaneously by writing those signs that
vary with the internal product, that is, the product on the right hand sides of
Equations (2.1), as coordinated plus-or-minus ± and minus-or-plus ∓ signs. Our
convention is that the top sign applies to the case in which the internal product is
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the complex number product, while the bottom sign applies to the case in which it
is the double number product.

In this proof, we write the components of a complex or double number γ as
an ordered pair γ = (γ0, γ1). We use this ambiguous notation purposely so that
a given ordered pair may represent either a complex or a double number, γ =
γ0 + iγ1 or γ0 + jγ1. Also, for the same reason, product symbols are not used in
Table 2.1. �

Table 2.1. Simultaneous proof of both of Kauffman’s original
product duality Equations 2.1 [15, p. 219] for level 1 of the Cayley-
Dickson sequence: the complex and dual numbers, C and D. The
top sign in the symbols ± and ∓ applies when the internal product
is the complex number product, and the bottom sign applies when
it is the double number product.

The Parts of γ The Subterms of the Four Terms 1
2 of Row Sums

γ0, γ1 +αβ +αβ +αβ −αβ γ = αβ

γ0
+α0β0 +α0β0 +α0β0 −α0β0 +α0β0

∓α1β1 ±α1β1 ±α1β1 ±α1β1 ±α1β1

γ1
+α0β1 +α0β1 −α0β1 +α0β1 +α0β1

+α1β0 −α1β0 +α1β0 +α1β0 +α1β0

The proof given in Table 2.1 was only a preliminary to the next tabular proof of
another lemma extending the original Kauffman product duality formulas, which
apply only to the real, complex, and double numbers, to the next higher level of
the elliptic and hyperbolic Cayley-Dickson algebras—the elliptic and hyperbolic
quaternions.

Lemma 2.2 (Duality of the Elliptic and Hyperbolic Quaternion Algebras).

α ⊛ β =
1

2

(

β ∗ α + β ∗ α + β ∗ α − β ∗ α
)

(2.2a)

α ∗ β =
1

2

(

β ⊛ α + β ⊛ α + β ⊛ α − β ⊛ α
)

(2.2b)

Proof. In the proof of Table 2.2 we tabulate only the signs of each subterm in the
sum defining a component part of the quaternion γ = αβ. Again we write these
numbers as an ordered n-tuple of components, where n, in this quaternion case, is 4:
γ = (γ0, γ1, γ2, γ3). Here a crucial difference from the complex and double number
algebras, C and D, at level 1 of the Cayley-Dickson sequence, is that the extension
of Kauffman’s product duality formulas to the elliptic and hyperbolic quaternions,
H and M, at level 2 of the Cayley-Dickson sequence, requires that they be modified
by transposing the factors in the product. This gives the so-called opposite product.
We indicate it in Table 2.1 as γop. However, this is the opposite of the Kauffman
duality product. As the last column shows γop is actually the desired quaternion
product. �

The following theorem gives the Kauffman product duality formulas as extended
to all levels of the elliptic and hyperbolic Cayley-Dickson algebra sequences.
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Table 2.2. Simultaneous proof of the two Kauffman product du-
ality Equations 2.2 as extended in this paper to the algebras at
level 2 of the Cayley-Dickson sequence: the elliptic and hyperbolic
quaternions, H and M. The top sign in the symbols ± and ∓ ap-
plies when the internal product is the elliptic quaternion product,
and the bottom sign applies when it is the hyperbolic quaternion
product. Here, for simplicity, we show only the signs of each sub-
term of the four terms while omitting the symbols for the compo-
nents themselves.

The Parts of γ The Subterms of the Four Terms 1
2 of Row Sums

γ0, γ1, γ2, γ3 +αβ +αβ +αβ −αβ γ = αβ γop = βα

γ0

+ + + − +α0β0 +α0β0

∓ ± ± ± ±α1β1 ±α1β1

∓ ± ± ± ±α2β2 ±α2β2

∓ ± ± ± ±α3β3 ±α3β3

γ1

+ + − + +α0β1 +α0β1

+ − + + +α1β0 +α1β0

+ − − − −α2β3 +α2β3

− + + + +α3β2 −α3β2

γ2, γ3 The γ2 and γ3 parts are analogous to the γ1 one.

Theorem 2.3 (Duality of All Ungeneralized Elliptic and Hyperbolic CD Algebras).

α ⊛ β =
1

2

(

β ∗ α + β ∗ α + β ∗ α − β ∗ α
)

(2.3a)

α ∗ β =
1

2

(

β ⊛ α + β ⊛ α + β ⊛ α − β ⊛ α
)

(2.3b)

Proof. The extension beyond levels 0 (the real numbers), 1 (the complex and dou-
ble numbers), and 2 (the elliptic and hyperbolic quaternions) of the elliptic and
hyperbolic Cayley-Dickson algebra sequences is by simple induction from Lemma
2.2. Note that only the noncommutative property of these products (which first
arises for the quaternion algebras at level 2) must be explicitly reflected in the
product duality formulas. No other algebraic properties, such as the various forms
of nonassociativity, need to be explicitly taken into account in these formulas since
all other algebraic properties involve products of more than two factors. �

The following Theorem 2.4 gives the Kauffman product duality formulas as ex-
tended to the split elliptic and hyperbolic quaternions. We use Equation (2.4a)
of this theorem in Section 4 to construct a full matrix algebra representation for
the split hyperbolic quaternions �M. As symbolized by HMat(R, 2) this matrix rep-
resentation is a basic component in the matrix representations of the orientation
congruent algebras OCp,q. The role of HMat(R, 2) in the matrix representations
of the orientation congruent algebras OCp,q is analogous to that of the full matrix
algebra of real 2×2 matrices Mat(R, 2) in the matrix representations of the Clifford
algebras Cℓp,q. These matrix representations will be developed later in Section 6.
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Theorem 2.4 (Duality of the Split Elliptic and Hyperbolic Quaternions).

α ⊛ β =
1

2

(

β ∗ α + β ∗ α + β ∗ α − β ∗ α
)

(2.4a)

α ∗ β =
1

2

(

β ⊛ α + β ⊛ α + β ⊛ α − β ⊛ α
)

(2.4b)

Proof. The proof in Table 2.3 is analogous to that of Lemma 2.2. �

In the following we derive the hyperbolic Cayley-Dickson formula. The first step
is, using the first extended Kauffman product duality formula, Equation 2.3a, to
determine the hyperbolic quaternion matrix representation and its nonassociative
matrix product. It turns out that the these matrix representations are complex
with entries from C. The entries of these matrices are also linearly dependent
so that the nonassociative matrix product actually defines a product of pairs of
complex numbers. Then, we use the second extended Kauffman product duality
formula, Equation 2.3b, to expand each complex number product occurring in this
nonassociative product of complex number pairs into an internal product that is
the product of double numbers. This is our desired result—an expression recur-
sively defining the hyperbolic Cayley-Dickson algebras as pairs of numbers from the
hyperbolic Cayley-Dickson algebra at the next lower level.

Table 2.3. Simultaneous proof of the two Kauffman product du-
ality Equations 2.4 as extended in this paper to the split algebras
at level 2 of the Cayley-Dickson sequence: the split elliptic and hy-
perbolic quaternions, �H and �M. The top sign in the symbols ± and
∓ applies when the internal product is the split elliptic quaternion
product, and the bottom sign applies when it is the split hyperbolic
quaternion product. Here, again for simplicity, we show only the
signs of each subterm of the four terms while omitting the symbols
for the components themselves.

The Parts of γ The Subterms of the Four Terms 1
2 of Row Sums

γ0, γ1, γ2, γ3 +αβ +αβ +αβ −αβ γ = αβ γop = βα

γ0

+ + + − +α0β0 +α0β0

∓ ± ± ± ±α1β1 ±α1β1

± ∓ ∓ ∓ ∓α2β2 ∓α2β2

± ∓ ∓ ∓ ∓α3β3 ∓α3β3

γ1

+ + − + +α0β1 +α0β1

+ − + + +α1β0 +α1β0

− + + + +α2β3 −α2β3

+ − − − −α3β2 +α3β2

γ2

+ + − + +α0β2 +α0β2

+ − + + +α2β0 +α2β0

+ − − − −α3β1 +α3β1

− + + + +α1β3 −α1β3

γ3 The γ3 part is analogous to the γ2 one.
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3. Hamilton and Dirac Coordinates

As is well known, the complex numbers may be defined of as ordered pairs of
real numbers (u, v) subject to the multiplication rule (u1, v1) ∗ (u2, v2) = (u1u2 −
v1v2, u1v2 + u2v1). According to Lounesto [24, p. 31], this formulation is due to
Hamilton. Therefore, we use the term Hamilton coordinates to refer to this use of
ordered pairs to express complex numbers. However, we extend this terminology to
refer not only to complex numbers, but also to numbers of any elliptic or hyperbolic
CD algebra. We also say that a number is in Hamilton coordinates not only if it
expressed as a simple pair of numbers from the next lower algebra, but also if it is
expressed as pairs of pairs of numbers from the second lower algebra. Furthermore,
we allow such expansions of numbers into pairs of numbers from lower level algebras
to be carried as far down as one wishes, but uniformly, so that only numbers of
an elliptic or hyperbolic CD algebra from a given level appear anywhere in the
expansion. And, of course, these expansions can contain numbers no lower than
those in R at level 0.

The following works of Louis H. Kauffman provide, in part, an introduction to
the physical meaning of Dirac coordinates (or iterants in Kauffman’s terms) in
special relativity, Complex Numbers and Algebraic Logic [15], Transformations in

special Relativity [16], Knot Logic [17], and Knots and Physics [18, pp. 392–402,
460–466]. For more references and a further discussion of the physical significance
of Dirac coordinates see the paper by Kim and Noz, Dirac’s Light-Cone Coordinate

System [20].

Table 3.1. The standard basis elements of D, the ring of double
numbers, written in Hamilton and Dirac coordinates. In this table
and those following the Dirac coordinates are written with the plus
sign “+” representing +1 and the negative sign “−” representing
−1.

Symbol Hamilton Coordinates Dirac Coordinates
Level 1 Level 0 Level 0

1 (1, 0) [+, +]
j (0, 1) [+,−]

Table 3.2. The standard basis elements of M, the ring of Mac-
farlane’s hyperbolic quaternions, written in Hamilton and Dirac
coordinates.

Symbol Hamilton Coordinates Dirac Coordinates
Level 2 Level 1 Level 0 Level 1 Level 0

1 (1, 0) ((1, 0), (0, 0)) [1, 1] [[+, +], [+, +]]
ii (j, 0) ((0, 1), (0, 0)) [ j, j] [[+,−], [+,−]]
jj (0, 1) ((0, 0), (1, 0)) [1, −1] [[+, +], [−,−]]
lk (0, j) ((0, 0), (0, 1)) [ j, −j] [[+,−], [−, +]]

Note that the sequences consisting of +1 and −1 that appear in the level 0
Dirac coordinate representations of the hyperbolic Cayley-Dickson algebras form
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Table 3.3. The standard basis elements of G, the ring of hyper-
bolic octonions, written in Hamilton coordinates.

Symbol Hamilton Coordinates
Level 3 Level 2 Level 1 Level 0

1 (1, 0) ((1, 0), (0, 0)) (((1, 0), (0, 0)), ((0, 0), (0, 0)))
ii (ii, 0) ((j, 0), (0, 0)) (((0, 1), (0, 0)), ((0, 0), (0, 0)))
jj (jj, 0) ((0, 1), (0, 0)) (((0, 0), (1, 0)), ((0, 0), (0, 0)))
lk (lk, 0) ((0, j), (0, 0)) (((0, 0), (0, 1)), ((0, 0), (0, 0)))
ll (0, 1) ((0, 0), (1, 0)) (((0, 0), (0, 0)), ((1, 0), (0, 0)))
iill (0, ii) ((0, 0), (j, 0)) (((0, 0), (0, 0)), ((0, 1), (0, 0)))
jjll (0,jj) ((0, 0), (0, 1)) (((0, 0), (0, 0)), ((0, 0), (1, 0)))
lkll (0, lk) ((0, 0), (0, j)) (((0, 0), (0, 0)), ((0, 0), (0, 1)))

Table 3.4. The standard basis of G, the ring of hyperbolic octo-
nions, written in Dirac coordinates.

Symbol Dirac Coordinates
Level 3 Level 2 Level 1 Level 0

1 [ 1, 1] [[1, 1], [ 1, 1]] [[[+, +], [+, +]], [[+, +], [+, +]]]
ii [ ii, ii] [[ j, j], [ j, j]] [[[+,−], [+,−]], [[+,−], [+,−]]]
jj [ jj, jj] [[1,−1], [ 1,−1]] [[[+, +], [−,−]], [[+, +], [−,−]]]
lk [lk, lk] [[ j, −j], [ j, −j]] [[[+,−], [−, +]], [[+,−], [−, +]]]
ll [ 1, −1] [[1, 1], [−1,−1]] [[[+, +], [+, +]], [[−,−], [−,−]]]
iill [ ii, −ii] [[ j, j], [ −j, −j]] [[[+,−], [+,−]], [[−, +], [−, +]]]
jjll [ jj, −jj] [[1,−1], [−1, 1]] [[[+, +], [−,−]], [[−,−], [+, +]]]
lkll [lk,−lk] [[ j, −j], [ −j, j]] [[[+,−], [−, +]], [[−, +], [+,−]]]

the set of Walsh functions. In fact, the natural order used in the above tables to
list the basis elements of the hyperbolic CD algebras corresponds to the natural or
Hadamard order of the Walsh functions. This interpretation of the Cayley-Dickson
algebra basis elements as Walsh functions should lead to another way to calculate
the products of the Cayley-Dickson algebras similar to the results obtained by
Hagmark and Lounesto in References [13] and [24, pp. 279 ff.].
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4. A Matrix Representation for the Hyperbolic Quaternion Algebra

Let us try to define a matrix representation of the hyperbolic quaternion algebra
M which is isomorphic to the orientation congruent algebra OC2. We need four
matrices that might correspond to the four basis elements of M, 1, ii ∼= e1, jj∼= e2,
and lk ∼= e12.

Perhaps the matrices

(4.1) I :=

(

1 0
0 1

)

, A :=

(

0 −i

−i 0

)

, B :=

(

0 −1
1 0

)

, C :=

(

−i 0
0 i

)

might represent the basis elements of M with the correspondences I ↔ 1, A ↔ ii,
B ↔ jj, C ↔ lk. But under what product?

Let the set of square matrices and their matrix algebras over R, C, and Hamil-
ton’s quaternions H, be written as Mat(R, n), Mat(C, n), and Mat(H, n), respec-
tively. It is among these algebras that faithful matrix representations of the real
Clifford algebras Cℓp,q are found. All elements of these matrix algebras do asso-
ciate because their multiplication is the usual matrix product and each entry in
these matrices is a member of an associative algebra, but the elements of M do not

associate under the orientation congruent product. Therefore, the usual matrix
algebras and their products cannot represent the algebra M and its product.

Before attempting to define an appropriate product, we review some standard
definitions and notation.

For any matrix P with entries from the complex field C, let an overline as in P

mean the (matrix) complex conjugation of P defined as the complex conjugation
of every element of P. Also, let a lower case superscript t as in Pt mean the
transposition of P. Finally, let an upper case superscript H as in PH mean the
Hermitian conjugation of P defined as the transpose of the matrix conjugate, or,
equivalently, the conjugate of the matrix transpose

(4.2) PH := (P)t = Pt.

We now define the (left) Hermitian conjugate product, denoted by a circled star
⊛, so that for all conforming matrices P and Q

(4.3) P ⊛ Q := PHQ.

Here, as usual, juxtaposition indicates the standard associative matrix product.
The reader may verify that the Hermitian conjugate product of any two same or

different matrices from the set {A,B,C } ⊆ Mat(C, 2) corresponds to the product
of the corresponding elements of M. Unfortunately, this correspondence of products
breaks down when one of the matrices from this set is the Hermitian conjugate
multiplier of the identity matrix I as in A ⊛ I = AH 6= A. However, a fix is
possible. It is based on one of the extended Kauffman product duality formulas for
elliptic and hyperbolic quaternions which was proved in Table 2.2.

Motivated by the partial success of I, A, B, and C as matrix representations for
M let us now try translating expressions in Dirac coordinates into 2 × 2 matrices
of the same form as I, A, B, and C according to the scheme

[w, x] 7→
1

2

(

(w + x) (−w + x)
(w − x) (w + x)

)

.(4.4)
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As it was designed to do this transformation produces the following correspon-
dence between the standard 1, ii, jj, and lk basis elements of the hyperbolic quater-
nions in Dirac coordinates and double number 2 × 2 matrices

(4.5)

1 ∼= [1, 1] 7→

(

1 0
0 1

)

, ii ∼= [j, j] 7→

(

0 −j

−j 0

)

,

jj∼= [1,−1] 7→

(

0 −1
1 0

)

, and lk ∼= [j,−j] 7→

(

−j 0
0 j

)

.

As just stated the imaginary numbers in these matrices are double numbers from
the ring D. However, if instead they were imaginary numbers from the complex field
C we would have exactly the four matrices I, A, B, C defined in Equation (4.1).
Therefore, we define the matrix representations of the hyperbolic quaternions M to
be just so. We are encouraged to make this move not only by the partial success of
I, A, B, and C as matrix representations for M, but also by the extended Kauff-
man product duality formulas of Equations (2.2) defining hyperbolic quaternion
multiplication in terms of elliptic quaternion multiplication and vice versa.

We now have the following correspondence

(4.6)

1 ∼= [1, 1] 7→

(

1 0
0 1

)

, ii ∼= [j, j] 7→

(

0 −i

−i 0

)

,

jj∼= [1,−1] 7→

(

0 −1
1 0

)

, and lk ∼= [j,−j] 7→

(

−i 0
0 i

)

.

This correspondence defines a linear transformation which we call m, and we call
matrices of this form m-matrices. Under the m transformation we may write, for
example,

(4.7) m(ii) = m([j, j]) =

(

0 −i

−i 0

)

.

The linear transformation m establishes at least a vector space isomorphism from
the hyperbolic quaternions, or their Dirac coordinates, to the space of complex 2×2
matrices Mat(C, 2).

Here we digress to discuss some properties of m-matrices and their conversion
to and from Dirac coordinates. These matrices obey the following equation which
explicitly shows that they have only two degrees of freedom

(

a b

c d

)

=

(

a b

−b a

)

.(4.8)

It is easy to see that all independent pairs of entries are those in which both entries
are not on the same main or minor diagonal.

The next diagram illustrates a “Chinese restaurant” scheme for translating m-ma-
trices back into Dirac coordinates: take one from the first column and one from the
second column

(

a b

c d

)

7→









a − b a + b

a + c a − c

d − b d + b

d + c d − c









.(4.9)
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Thus, for matrices of this form, a few of the 16 equivalent corresponding Dirac
coordinate expressions are given by

(

a b

c d

)

7→ [d − b, a − c] = [d + c, a + b] = [a − b, a + b] = [d − b, d + b].(4.10)

It turns out that the m-matrices for ii, jj, and lk are related to the Pauli spin
matrices, σ1, σ2, σ3 which form the standard matrix representations of the elliptic
quaternions i , j , and k as isomorphic to the bivectors -e23, -e31, and -e12, respec-
tively, of Cℓ3 [24, pp. 54-56]

(4.11)

m(ii)= −iσ1
∼= i ∼= −e23 ∈ Cℓ3,

m(jj)= −iσ2
∼= j ∼= −e31 ∈ Cℓ3,

m(ii)= −iσ3
∼= k ∼= −e12 ∈ Cℓ3.

The Hermitian conjugate of the m-matrices is given explicitly by

(

a b

c d

)H

=

(

d −b

−c a

)

.(4.12)

Lounesto [24, pp. 54-56] informs us that the Hermitian conjugation of these matrices
is equivalent to the reversion, or, since the m-matrices represent bivectors, the
Clifford conjugation, of their corresponding Clifford algebra elements in Cℓ3. It
also easy to see that Hermitian conjugation of the m-matrices is equivalent to
quaternion conjugation of the corresponding elements of the quaternion algebra.
We note in passing that Hermitian conjugation of these matrices is an example
of a simplectic involution defining a split composition algebra over Mat(C, 2) as
described by E. N. Kuz′min and Ivan P. Shestakov [21, p. 218].

Let p and q be hyperbolic quaternions with m-matrix representations m(p) and
m(p), respectively. Also, redefine the circled star ⊛ used previously to represent
the Hermitian conjugate product to now represent the nonassociative matrix prod-
uct corresponding to the hyperbolic quaternion product Then the product of the
hyperbolic quaternions p and q may be expressed as
(4.13)

m(p) ⊛ m(q) =
1

2

(

m(q)m(p) + m(q)m(p)H + m(q)H m(p) − m(q)H m(p)H
)

.

Proof. The right hand side of the above equation is just one of the extended
Kauffman product duality formulas from Equations (2.2) expressing the hyperbolic
quaternion product in terms of the elliptic quaternion product. Here, however, it
has been translated into the standard matrices representing the even subalgebra of
Cℓ3 which in turn is isomorphic to the elliptic quaternion algebra. Also, as noted
above, in the standard matrix representation for Cℓ3, Hermitian conjugation is the
matrix operation corresponding to quaternion conjugation. The result follows. �

Some example calculations follow.



STRUCTURALLY-HYPERBOLIC ALGEBRAS 25

(4.14)

iijj 7→ m(ii) ⊛ m(jj) =

(

0 −i

−i 0

)

⊛

(

0 −1
1 0

)

,

m(ii) ⊛ m(jj) =
1

2

(

0 −1
1 0

) (

0 −i

−i 0

)

+
1

2

(

0 −1
1 0

) (

0 −i

−i 0

)H

+
1

2

(

0 −1
1 0

)H (

0 −i

−i 0

)

−
1

2

(

0 −1
1 0

)H (

0 −i

−i 0

)H

=
1

2

(

0 −1
1 0

) (

0 −i

−i 0

)

+
1

2

(

0 −1
1 0

) (

0 i

i 0

)

+
1

2

(

0 1
−1 0

) (

0 −i

−i 0

)

−
1

2

(

0 1
−1 0

) (

0 i

i 0

)

=
1

2

(

i 0
0 −i

)

+
1

2

(

−i 0
0 i

)

+
1

2

(

−i 0
0 i

)

−
1

2

(

i 0
0 −i

)

=

(

−i 0
0 i

)

7→ lk.

(4.15)

iiii 7→ m(ii) ⊛ m(ii) =

(

0 −i

−i 0

)

⊛

(

0 −i

−i 0

)

,

m(ii) ⊛ m(ii) =
1

2

(

0 −i

−i 0

) (

0 −i

−i 0

)

+
1

2

(

0 −i

−i 0

) (

0 −i

−i 0

)H

+
1

2

(

0 −i

−i 0

)H (

0 −i

−i 0

)

−
1

2

(

0 −i

−i 0

)H (

0 −i

−i 0

)H

=
1

2

(

0 −i

−i 0

) (

0 −i

−i 0

)

+
1

2

(

0 −i

−i 0

) (

0 i

i 0

)

+
1

2

(

0 i

i 0

) (

0 −i

−i 0

)

−
1

2

(

0 i

i 0

) (

0 i

i 0

)

=
1

2

(

−1 0
0 −1

)

+
1

2

(

1 0
0 1

)

+
1

2

(

1 0
0 1

)

−
1

2

(

−1 0
0 −1

)

=

(

1 0
0 1

)

7→ 1.
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5. The Hyperbolic Cayley-Dickson Algebras and Generalizations

We are now ready to carry out the final steps in our program to develop, using
duality, a recursive definition of the generalized hyperbolic Cayley-Dickson algebras
from the standard recursive definition of the elliptic Cayley-Dickson algebras. How-
ever, we can go beyond the elliptic case by defining the ultrageneralized hyperbolic
Cayley-Dickson algebras in the last part of this section. In fact, we are forced to go
beyond the elliptic case because certain types of split ultrageneralized hyperbolic
quaternion algebras, for example, are needed as factors in the representation of the
orientation congruent algebras OCp,q as tensor products of algebras in Section 5.

We have already carried out the preliminary step in Section 2 by using the first
extended Kauffman product duality formula, Equation 2.2a, to determine the hy-
perbolic quaternion m-matrix representation and its nonassociative matrix product.
Here we use these complex matrices to find a recursive hyperbolic-elliptic quaternion
product formula which has hyperbolic quaternion multiplication on the left hand
side and complex number multiplication on the right. When the matrix represen-
tation is converted back to Dirac coordinates, and then to Hamilton coordinates,
we obtain the recursive Cayley-Dickson algebra product duality formula which is
Equation (5.3a) of Theorem 5.1. By an argument similar to that in the proof of
Theorem 2.3, this formula is valid at any Cayley-Dickson algebra level, not just the
quaternion one. Theorem 5.1 expressing this formula and its dual is the first major
result of this section.

Then, we use the second extended Kauffman product duality formula, Equation
2.2b, to expand each complex number product occurring in this formula into a
double number internal product. This result is also valid at any level beyond the
quaternions by an argument similar to that in the proof of Theorem 2.3. This,
the second major result of this section, is given in Theorem 5.2 as the general-

ized hyperbolic Cayley-Dickson product algebra formula—an expression recursively
defining the hyperbolic Cayley-Dickson algebras as pairs of numbers from the hy-
perbolic Cayley-Dickson algebra at the next lower level.

Finally, we obtain our last major result of this section by modifying the recursive
formula for the hyperbolic Cayley-Dickson algebra product to define the ultragener-

alized hyperbolic Cayley-Dickson algebras with the recursive product formula given
in Definition 5.4. As mentioned above, some algebras of this type are required fac-
tors in the tensor product of algebras representation of the orientation congruent
algebras discussed in Section 6.

Recall the following result of an m transformation on the hyperbolic quaternion
q = [w, x] in Dirac coordinates

m([w, x]) =
1

2

(

(w + x) (−w + x)
(w − x) (w + x)

)

.(5.1)

The computation of the product q3 = q1q2 of the general hyperbolic quaternions
q1 = [w1, x1] and q2 = [w2, x2] in their m-matrix representations begins as follows
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(5.2)

m(q3) = m(q1) ⊛ m(q2)

=
1

2

(

(w1 + x1) (−w1 + x1)
(w1 − x1) (w1 + x1)

)

⊛
1

2

(

(w2 + x2) (−w2 + x2)
(w2 − x2) (w2 + x2)

)

=
1

4

(

(w2 + x2) (−w2 + x2)
(w2 − x2) (w2 + x2)

) (

(w1 + x1) (−w1 + x1)
(w1 − x1) (w1 + x1)

)

+
1

4

(

(w2 + x2) (−w2 + x2)
(w2 − x2) (w2 + x2)

) (

(w1 + x1) (−w1 + x1)
(w1 − x1) (w1 + x1)

)H

+
1

4

(

(w2 + x2) (−w2 + x2)
(w2 − x2) (w2 + x2)

)H (

(w1 + x1) (−w1 + x1)
(w1 − x1) (w1 + x1)

)

−
1

4

(

(w2 + x2) (−w2 + x2)
(w2 − x2) (w2 + x2)

)H (

(w1 + x1) (−w1 + x1)
(w1 − x1) (w1 + x1)

)H

The rest of this calculation is extremely tedious and prone to accumulate many
errors if done by hand. So we let Mathematica finish the work. The result is
expressed in Hamilton coordinates with an implicit product on the right hand side
which is that of the complex numbers, or more generally, that of the elliptic Cayley-
Dickson algebra one level lower than the hyperbolic one on the left hand side. This
equation, which is one of the Cayley-Dickson algebra product duality formulas, is,
by duality, also valid with an elliptic left hand side product and a hyperbolic right
hand side product.

At this first stop of this leg of our journey we have penetrated deeply into the land
of Ogs. We find that, in this land beyond the vast realm of the Wizard Kauffman
of Chicago, any number of nested snakes may bite their tails. The first major result
of this section is

Theorem 5.1 (The Cayley-Dickson Algebra Product Duality Formulas). The prod-

ucts on the right-hand-sides of the following equations are not shown explicitly;

however, they are dual to those on the left-hand-sides.

(w1, x1) ⊛ (w2, x2) =
1

2

(

w2w1 + w2w1 + w2w1 − w2w1 + 2x2x1,

2(x2w1 + w2x1)
)

(5.3a)

(w1, x1) ∗ (w2, x2) =
1

2

(

w2w1 + w2w1 + w2w1 − w2w1 + 2x2x1,

2(x2w1 + w2x1)
)

.

(5.3b)

Proof. Most of the proof of Equation (5.3a) was given in the text immediately
before this theorem. Furthermore, by an argument similar to that in the proof of
Theorem 2.3, once this formula is verified for elliptic or hyperbolic octonions at
level 3 on the left hand side, it is valid at any Cayley-Dickson algebra level. This
verification is left to the reader. Equation (5.3b) follows by the duality of Theorem
2.3. �

Note the formal equivalence of Equations (5.3a) and (5.3b) in Theorem 5.1. By
combining pairs of mutually conjugate second factors in each term in Equations
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(5.3) we obtain the following versions of the Cayley-Dickson product duality for-
mulas

(w1, x1) ⊛ (w2, x2) =
1

2

(

w2(w1 + w1) + w2(w1 − w1) + 2x2x1,

2(x2w1 + w2x1)
)

.
(5.4a)

(w1, x1) ∗ (w2, x2) =
1

2

(

w2(w1 + w1) + w2(w1 − w1) + 2x2x1,

2(x2w1 + w2x1)
)

.
(5.4b)

Here are some example calculations for hyperbolic quaternions

iijj 7→ (i, 0) ⊛ (0, 1) =
1

2
(0(i − i) + 0(i + i) + 2(1 · 0), 2(1i + 0 · 0) = (0, i) 7→ lk,

jjii 7→ (0, 1) ⊛ (i, 0) =
1

2
(i(0 + 0) − i(0 − 0) + 2(0 · 1), 2(0 · 0 − i · 1) = (0,−i) 7→ −lk,

iiii 7→ (i, 0) ⊛ (i, 0) =
1

2
(i(i − i) − i(i + i) + 2(0 · 0), 2(0i− i0) = (1, 0) 7→ 1.

This formula should also work with hyperbolic octonions. Recalling that the im-
plicit product on the right hand side of the following equations is elliptic quaternion
multiplication, here are some example calculations for hyperbolic octonions

iijj 7→ (i , 0) ⊛ (j , 0) =
1

2
(j (i − i) − j (i + i) + 2(0 · 0), 2(0i − j0) = (k , 0) 7→ lk,

jjii 7→ (j , 0) ⊛ (i , 0) =
1

2
(i(j − j ) − i(j + j ) + 2(0 · 0), 2(0j − i0) = (−k , 0) 7→ −lk,

iiii 7→ (i , 0) ⊛ (i , 0) =
1

2
(i(i − i) − i(i + i) + 2(0 · 0), 2(0i − i0) = (1, 0) 7→ 1,

iill 7→ (i , 0) ⊛ (0, 1) =
1

2
(0(i − i) − 0(i + i) + 2(1 · 0), 2(1i + 0 · 0) = (0, i) 7→ iill,

llii 7→ (0, 1) ⊛ (i , 0) =
1

2
(i(0 + 0) − i(0 − 0) + 2(0 · 1), 2(0 · 0 − i1) = (0,−i) 7→ −iill,

(iill)ii 7→ (0, i) ⊛ (i , 0) =
1

2
(i(0 + 0) − i(0 − 0) + 2(0(−i)), 2(0 · −ii) = (0, 1) 7→ ll.

Now we are ready to obtain the second major result of this section, the general-

ized hyperbolic Cayley-Dickson algebra product formula, in which all products are
hyperbolic ones, including the implicit products on the right hand side. At this,
our second stop in this leg of our journey into the land of Ogs, we find that the
nested snakes have learned to keep their heads intact while miraculously turning
the rest of their bodies inside out somewhere between their heads and tails and still
managing to bite those inside-out tails.

We start the derivation that proves this theorem by applying the extended Kauff-
man product duality formula of Equation (2.2b) to the right hand side of Cayley-
Dickson algebra product duality formula of Equation (5.3). Then, we simplify in
Mathematica. Finally, after adding the factor γ (which, for example, is chosen
as +1 (resp., −1) to define the ungeneralized (resp., split) hyperbolic quaternions
in terms of pairs of double numbers) we obtain the generalized hyperbolic Cayley-

Dickson product formula



STRUCTURALLY-HYPERBOLIC ALGEBRAS 29

Theorem 5.2 (The Generalized Hyperbolic Cayley-Dickson Algebra Product For-
mula).

(w1, x1) ⊛ (w2, x2) =
1

2

(

2w1w2 + γ(x1x2 + x1x2 − x1x2 + x1x2),

(w1x2 + w1x2 + w1x2 − w1x2)(5.5a)

+ (x1w2 − x1w2 + x1w2 + x1w2)
)

which can be regrouped as

=
1

2

(

2w1w2 + γ
(

x1(x2 − x2) + x1(x2 + x2)
)

,

w1(x2 + x2) + w1(x2 − x2)(5.5b)

+ (x1 − x1)w2 + (x1 + x1)w2)
)

.

Proof. Again, most of the proof was given in the text immediately before this
theorem. It only remains to note that, once more, by an argument similar to that
in the proof of Theorem 2.3, this formula is valid at any Cayley-Dickson algebra
level, once it has been verified for elliptic or hyperbolic octonions at level 3 on the
left hand side. This verification is again left to the reader. �

To express the Clifford algebras Cℓp,q as tensor products of algebras we need
only four factor algebras, the complex and dual number algebras, C and D, as well
as the ungeneralized and split elliptic quaternions, H and �H ∼= Mat(R, 2). For
details see, for example, [24, Ch. 16], [33], [34], [35, Ch. 15], or [36]. However, in
the hyperbolic case, in order to factor the orientation congruent algebras OCp,q, we
need even further generalized (ultrageneralized) types of quaternions than just the
ungeneralized and split versions that were sufficient in the elliptic case.

These ultrageneralized hyperbolic quaternion algebras are dependent on three
more parameters than the one, namely γ, whose value determines whether the gen-
eralized elliptic and hyperbolic quaternions reduce to their ungeneralized version
or not. In the following it is convenient to first rename γ as α. These parameters,
four in all, α, β, γ, and δ, may, most generally, take the value of any real number
in a similar way to that discussed in Shafarevich’s book [47, pp. 93 f., 201] for the
generalized (elliptic) quaternion algebras and, in his words, the “generalised Cayley
algebras” (which are our generalized elliptic octonion algebras). Thus, the algebras
of the generalized as well as the ultrageneralized hyperbolic quaternions are deter-
mined by α, β, γ, and δ. The resulting multiplication table for the ultrageneralized
hyperbolic quaternions is displayed in Table 5.1.

The distribution of these parameters among the products of this multiplication
table is not arbitrary, but is correlated with the role of the four parameters in the
defining Equation (5.7) for the ultrageneralized hyperbolic Cayley-Dickson algebras.
Equation (5.7) is presented soon below.

In fact, the above presentation of the ultrageneralized hyperbolic quaternions
by their multiplication table, although easier to assimilate, has the cart before the
horse. This is because it is the following two requirements that dictate the distri-
bution of the additional parameters β, γ, and δ (beyond α, which is the original γ

for the generalized algebras) in Table 5.1: (1) the additional parameters must be
naturally incorporated into Equation (5.7) defining the ultrageneralized hyperbolic
CD algebras; and (2) the resulting ultrageneralized hyperbolic CD algebras must
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Table 5.1. The multiplication table for the ultrageneralized hy-
perbolic quaternions. It is dependent on the values from R as-
signed to the parameters α, β, δ, and γ. E.g., the all-positive
choice α = β = γ = δ = +1 gives the algebra M of Macfarlane’s
(ungeneralized) hyperbolic quaternions; while the single-negative
choice α = −1 gives the algebra �M of split hyperbolic quaternions.
The product is symbolized as ⊛, circled to indicate a hyperbolic
algebra.

b

a ⊛ b 1 ii jj lk

1 1 ii jj lk

ii ii 1 γδlk −γjj
a

jj jj −γδlk α αβii

lk lk γjj −αβii α

include some quaternion algebras that are suitable factors in Section 6’s represen-
tations of the orientation congruent algebras as tensor products of algebras.

We have been developing Equation (5.7) for the recursive product formula of
the ultrageneralized hyperbolic CD algebras in terms of the ultrageneralized hy-
perbolic quaternions. However, it is important to note that this equation defines
a whole sequence of ultrageneralized hyperbolic Cayley-Dickson algebras, not just
the ultrageneralized hyperbolic quaternion ones of Table 5.1.

We are about to incorporate the parameters α, β, γ, and δ into the recursive
product formula for the ultrageneralized hyperbolic Cayley-Dickson algebras to
effect the mutations of products shown in Table 5.1. But first, we must define the
imaginary part multiplication operator C(•).

Definition 5.3 (Imaginary Part Multiplication Operator). The imaginary part

multiplication operator C(•) acting on w is written as a superscript as in wC(•).
For some parameter, say γ ∈ R, it operates on the element w of the next lower
(elliptic or hyperbolic) Cayley-Dickson algebra by multiplying the imaginary part
of w by γ as in

(5.6) wC(γ) :=
1

2

(

(

w + w
)

+ γ
(

w − w
)

)

= Re w + γ Im w.

We have now arrived at the third and last stop in this leg of our tour of the land
of Ogs. Here we find that the nested snakes have learned the trick of cutting out
various sections of their heads in intricate patterns and rejoining them to the rest of
their heads upside down as they bite their inside-out tails. In this, the final major
result of this section, recall that the original parameter γ of Theorem 5.2, and which
determines the ungeneralized or generalized character of a hyperbolic CD algebra,
remains as the simple multiplier it previously was, but it is now renamed to α. We
define the ultrageneralized hyperbolic Cayley-Dickson algebras with the following
recursive product formula.
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Definition 5.4 (The Ultrageneralized Hyperbolic Cayley-Dickson Algebra Product
Formula).

(5.7)

(w1, x1) ⊛ (w2, x2) =
1

2

(

2w1w2 + α
(

x1(x2 − x2) + x1(x2 + x2)
)C(β)

,

(

w
C(γ)
1 (x2 + x2) + w

C(γ)
1 (x2 − x2)

+ (x1 − x1)w
C(γ)
2 + (x1 + x1)w

C(γ)
2

)C(δ)
)

.

We again emphasize that the recursive product formula in Equation (5.7) defines
a whole sequence of ultrageneralized hyperbolic CD algebras, not just the ultragen-
eralized hyperbolic quaternion ones. However, for the ultrageneralized hyperbolic
Cayley-Dickson algebras over the real field R, Equation (5.7) reduces at level 1 to

(w1, x1) ⊛ (w2, x2) = (w1w2 + αx1x2, w1x2 + x1w2).

It is extremely convenient that at level 1 only the parameter α remains in this
equation. The values of β, γ, and δ are irrelevant since conjugation of a real number
has no effect. Thus we avoid the possible production of equations which contradict
the definition of 1 as the multiplicative identity. For the ungeneralized double
number ring D (identical to the split complex ring �C) the forbidden equations are
1j = j1 = −j; while for split double number field �D (identical to the complex field
C) the forbidden equations are 1i = i1 = −i.

Equation (5.8a) of the following lemma is useful for calculations with computer-
assisted algebra systems that come with standard packages for the elliptic quater-
nions, such as Mathematica. This equation allows the definition of the ultragen-
eralized hyperbolic quaternion operations in terms of the elliptic quaternion ones.
Thus, the tediousness of verifying the results of the next section may be reduced
by assigning most of the calculations to the computer.

Lemma 5.5 (The Ultrageneralized Cayley-Dickson Algebra Product Duality For-
mulas). Consistent with our earlier presentation in Theorem 5.1, the products on

the right-hand-sides of the following equations are not shown explicitly; however,

they are dual to those on the left-hand-sides.

(w1, x1) ⊛ (w2, x2) =
1

2

(

w2w1 + w2w1 + w2w1 − w2w1 + 2α(x2x1)
C(β),

2
(

x2w
C(γ)
1 + w

C(γ)
2 x1

)C(δ)
)(5.8a)

(w1, x1) ∗ (w2, x2) =
1

2

(

w2w1 + w2w1 + w2w1 − w2w1 − 2α(x2x1)
C−(β),

2
(

x2w
C(−γ)
1 + w

C(−γ)
2 x1

)C(−δ)
)(5.8b)

Proof. The proof is by direct verification of the equivalence of Equation (5.7) of Def-
inition 5.4 with Equation (5.8a) above for the ultrageneralized hyperbolic quater-
nions, followed by its dualization into Equation (5.8b). The validity of Equation
(5.8a) for the ultrageneralized hyperbolic n-level Cayley-Dickson algebras for any
n, not just for n = 2 and the ultrageneralized hyperbolic quaternions, follows again
by an argument similar to that used in the proof of Theorem 2.3. �
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Note that the formal equivalence of Equations (5.8a) and (5.8b) in Lemma 5.5
is spoiled by the sign changes required to maintain dual sign conventions for the
parameters β, γ, and δ that are consistent with the dual sign convention of α. The
dual sign convention for α is determined by Definition 1.2 in which its parameter
γ is equivalent to α.

While the parameters α, β, γ, and δ that appear as arguments of the imaginary
part multiplication operator C(•) in Equation (5.4) defining the ultrageneralized
hyperbolic Cayley-Dickson algebras may take any values in R, when these four
parameters are restricted to the two values −1 and +1, we obtain the standard,

nondegenerate, ultrageneralized hyperbolic Cayley-Dickson algebras. If, in addition,
the level of hyperbolic CD algebras is restricted to the value 2, we obtain standard,

nondegenerate, ultrageneralized hyperbolic quaternions that are used in Section 6.
Then a negative-valued parameter inverts the signs of certain specific products
associated with that parameter in the multiplication table of the ungeneralized hy-
perbolic quaternions M, while a positive-valued parameter causes no sign inversions.
With this in mind, we define the parameterized conjugation operator C(•) which is
simply the imaginary part multiplication operator with its parameter restricted to
the two values +1 and −1.

Definition 5.6 (Parameterized Conjugation Operator). We define the parameter-

ized conjugation operator C(•) by the same symbol and superscript convention as
the imaginary part multiplication operator of Definition 5.3. For some parameter,
say γ, which must be restricted to only the two values +1 and −1, it operates on
the element w of the next lower (elliptic or hyperbolic) Cayley-Dickson algebra by
multiplying the imaginary part of w by γ as in

(5.9) wC(γ) :=
1

2

(

(

w + w
)

+ γ
(

w − w
)

)

= Re w + γ Im w.

Note that the parameterized conjugation operator C(•) acts on any element w

as in wC(γ), to conjugate w, if γ = −1, or to not conjugate it, if γ = +1. Of course,
for an expression such as wC(γ) the net effect is reversed.

Starting with the ultrageneralized hyperbolic quaternions, a particular choice of
values for the parameters α, β, γ, and δ may be represented by the ordered 4-tuple
(α, β, γ, δ). For example, the split hyperbolic quaternions �M are specified as gener-
ated from the double numbers D by the level 2 parameter 4-tuple (−1, +1, +1, +1).

Let us now restrict our considerations to the standard, nondegenerate, hyperbolic
Cayley-Dickson algebras, whose parameters all take values from the set {+1,−1}.
Let us also reverse the order of the parameters in the 4-tuple (α, β, γ, δ) and trans-
late the reversed 4-tuple into a sequence of binary digits according to the corre-
spondence +1 7→ 0 and −1 7→ 1. When the resulting sequence of binary digits is
interpreted as a 4-digit binary number and replaced by its decimal equivalent any
parameter 4-tuple (α, β, γ, δ) becomes equivalent to a single integer from 0 to 15 in
one-to-one correspondence.

Thus, consistent with Definition 1.2 of the split elliptic and hyperbolic Cayley-
Dickson algebras given in the Introduction, we may use this one-to-one correspon-
dence between parameter 4-tuples and the integers 0, 1, . . . , 15 to establish the fol-
lowing definition.
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Definition 5.7 (The Split, Standard, Nondegenerate, Ultrageneralized Hyperbolic
n-Level Cayley-Dickson Algebras). A split, standard, nondegenerate, ultrageneral-

ized hyperbolic n-level Cayley-Dickson algebra (or, for short, split ultrageneralized

hyperbolic n-level Cayley-Dickson algebra) is any standard, nondegenerate, ultra-
generalized hyperbolic n-level Cayley-Dickson algebra with an odd integer repre-
senting its parameter 4-tuple at level n, and even integers representing its parameter
4-tuples at all other levels.

Furthermore, using this convention we may adopt a notation similar to Lounesto’s
in Reference [24, p. 285] and our own ECD(γ1, γ2, . . . γn) used in the paragraph
following Definition 1.1. Therefore, we may indicate the sequence of parameter
4-tuples defining a standard, nondegenerate, ultrageneralized hyperbolic Cayley-
Dickson algebra at any level n by an n-tuple of non-negative integers appended
to the symbol UHCD. At levels n ≥ 2 these numbers may take any value in the
range from 0 to 15. However, as mentioned earlier, at level 1 only the parameter α

remains in Equation (5.7), with the values of β, γ, and δ becoming irrelevant. Thus,
the set of numbers representing the 16 allowed parameter choices at higher levels
reduces at level 1 to just the two smallest, namely, 0 for the algebra D (∼= �C), and
1 for the algebra �D (∼= C). Then, for example, the split hyperbolic quaternions are
represented as �M ∼= UHCD(0, 1); the hyperbolic octonions, as G ∼= UHCD(0, 0, 0);
and the split hyperbolic octonions, as �G ∼= UHCD(0, 0, 1).

However, in practice, at level 2 of the standard, nondegenerate, ultrageneral-
ized hyperbolic quaternions, which are fundamental to constructing the orientation
congruent algebras in the following section, it is easier to represent the parameter
choices by subscripts of strings of letters from the set {α, β, γ, δ } appended to the
base symbol M with each letter appearing at most once. Thus, for example, we
have M ∼= UHCD(0, 0), �M ∼= Mα

∼= UHCD(0, 1), and Mαβ
∼= UHCD(0, 3). More-

over, due to the fundamental importance of the split ultrageneralized hyperbolic
quaternions in representing the orientation congruent algebras, we prefer to keep
the backslashed notation rather than employ the letter α as a subscript. Thus, for
example, we have the following isomorphisms �Mβ

∼= Mαβ
∼= UHCD(0, 3).
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6. The Duality Classification of Algebras

NOTE: Most of this section is wrong and needs much rewriting.
Nevertheless, there is a structure to the tensor products of algebras
that represent and classify the orientation congruent algebras. I am
currently investigating it and have some preliminary notes I am unable
to incorporate into this draft now. Hints of it are given at the end of
the last section.

Table 6.3 presents a shortened version of the standard Clifford algebra classi-
fication in terms of the matrix algebras over the real and complex numbers, and
the quaternions. The abbreviated notation used here is found in Lounesto’s [24,
Ch. 16] and Porteous’ [33], [34], [35, Ch. 15], [36] works. Explaining it by example,
the direct sum of the quaternion algebra with itself, H ⊕ H, becomes 2H in Porte-
ous’ notation, while the full 2 × 2 matrix algebra over the quaternions, sometimes
written as Mat(H, 2), becomes H(2).

Table 6.4 presents a shortened version of Keller’s Clifford algebra classification
in terms of the matrix algebras over the real, complex, and double numbers, and
the quaternions. The Zentralblatt reviewer [19] dismisses Keller’s use of the double
numbers (or duplex algebra in Keller’s words) to classify the Clifford algebras) by
saying, “Using the elementary fact that D ∼= R ⊕ R as a ring, the author makes a
trivial notational amendment to the table of Clifford algebras.” However, it is in
the dual relationship of the Clifford and orientation congruent algebras that the
seed of Keller’s notation becomes alive and grows to maturity.

Tables 6.5 and 6.6 present shortened versions of the new duality classification
of the Clifford and orientation congruent algebras. Tables 6.8 and 6.9 present full
versions (up to mod 8 periodicity) of the duality classification of the Clifford and
orientation congruent algebras. The notation in the full tables is abbreviated by

dropping the tensor product symbol ⊗, so that, for example, D ⊗ �H
⊗2

becomes

D �H
2
.

The publications of Mosna et al. [30, p. 4401] and Porteous [36, p. 35] give the
following useful isomorphisms (although we have added the last tensor products in
the first two chains)

C ⊗ C ∼= C ⊕ C ∼= C ⊗ D, C ⊗ H ∼= C(2) ∼= C ⊗ R(2), and H ⊗ H ∼= R(4).

Also note that R(2) is isomorphic to �H. This fact is used extensively in constructing
the duality classifications.

The duality between the Clifford and orientation congruent algebras is expressed
in Tables 6.5, 6.6, 6.8, and 6.9 in the following way. Except for cases of n = p+ q =
0, 1 comprising the self-dual algebras R, C, and D, the orientation congruent algebra
OCq,p is the algebra dual of the Clifford algebra Cℓp,q.

The tensor products of algebras representing these algebras are also in duality.
One such representation is transformed into its dual not by altering any real, com-
plex, or double algebra symbols appearing in its tensor product, but by swapping
any hyperbolic quaternion algebra, ungeneralized or split, for its corresponding el-
liptic quaternion algebra and vice versa. In symbols this is R 7→ R, C 7→ C, D 7→ D,
H 7→ M, M 7→ H, �H 7→ �M, and �M 7→ �H. Thus, except for the n = 0, 1 cases, the
sign of the quantity p−q must be inverted mod 8 to get a hyperbolic interpretation
of Okubo’s classification in Table 6.1, as well as the duality classification in Table
6.2, that can be applied to the orientation congruent algebra.
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Even though in the usual elliptic vs. hyperbolic sense the algebras C and D

are duals, in the Cℓ vs. OC algebra duality sense they, along with R, are self-
duals. That is because of the duality-invariant structure-determining role of the
algebras C and D. In this way duality relationships are determined solely by the
ungeneralized or split elliptic (resp., hyperbolic) quaternion algebras of the tensor
product representing a Clifford (resp., orientation congruent) algebra.

Let n = p + q be called the base dimension of the Cℓp,q and OCp,q algebras.
Then the split elliptic (resp., hyperbolic) quaternionic elements of the tensor prod-
uct representation also contribute to the total dimension 2n of the algebra Cℓp,q

(resp., OCp,q) by varying with the base dimension through the factors 4n/2 = 2n

and 4(n−2)/2 = 2n−2 derived, respectively, from the tensor products �H
⊗n/2

and

�H
⊗(n−2)/2

(resp., �M
⊗n/2

and �M
⊗(n−2)/2

) for even n, and the factors 4(n−1)/2 =

2n−1 and 4(n−3)/2 = 2n−3 derived, respectively, from the tensor products �H
⊗(n−1)/2

and �H
⊗(n−3)/2

(resp., �M
⊗(n−1)/2

and �M
⊗(n−3)/2

) for odd n.
The duality classification of the Clifford and orientation congruent algebras adds

two more fundamental classifications to the three of Okubo’s classification scheme
in Table 6.1. This is because his normal class splits into the new real and double

classes, while Okubo’s quaternionic class splits into the new singly quaternionic

and doubly quaternionic classes. For simplicity and consistency with the designa-
tions just given, in the duality classification we rename his almost complex case to
complex. The duality classification is presented in Table 6.2.

Table 6.1. Susumu Okubo’s classification of the real Clifford al-
gebras [31, 32]. This classification is determined by the column
index p− q of the following tables taken mod 8. The cases marked
with an asterisk admit two inequivalent irreducible real matrix re-
alizations; the other cases have unique irreducible realizations.

Classification
p − q mod 8

odd n = p + q even n = p + q

normal 1* 0 or 2
almost complex (a.c.) 3 or 7
quaternionic (quat.) 5* 4 or 6

Table 6.2. The duality classification of the real Clifford algebras.
This classification is determined by the column index p − q of the
following tables taken mod 8. The cases marked with an aster-
isk admit two inequivalent irreducible real matrix realizations; the
other cases have unique irreducible realizations.

Classification
p − q mod 8

odd n = p + q even n = p + q

real 0 or 2
double 1*

complex 3 or 7
singly quaternionic 4 or 6
doubly quaternionic 5*
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Table 6.3. Shortened table of the standard classification of the
Clifford algebras Cℓp,q in Porteous’ notation. See, for example, [24,
Ch. 16], [35, Ch. 15] or [36].

P
P

P
P

P
P

PP

p + q
p − q

−3 −2 −1 0 1 2 3

0 R

1 C 2R

2 H R(2) R(2)
3 2H C(2) 2R(2) C(2)

Table 6.4. Keller’s classification of the Clifford algebras Cℓp,q, a
shortened version of his Table III in Reference [19].

P
P

P
P

P
P

PP

p + q
p − q

−3 −2 −1 0 1 2 3

0 R(1)
1 C(1) D(1)

2 H(1) R(2) R(2)
3 2H(1) C(2) D(2) C(2)

Table 6.5. Shortened table of the duality classification of the Clif-
ford algebras Cℓp,q.

P
P

P
P

P
P

PP

p + q
p − q

−3 −2 −1 0 1 2 3

0 R

1 C D

2 H �H �H

3 D ⊗ H C ⊗ �H D ⊗ �H C ⊗ �H

Table 6.6. Shortened table of the duality classification of the ori-
entation congruent algebras OCp,q.

P
P

P
P

P
P

PP

p + q
p − q

−3 −2 −1 0 1 2 3

0 R

1 C D

2 �M �M M

3 C ⊗ �M D ⊗ �M C ⊗ �M D ⊗ M
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