STRUCTURALLY-HYPERBOLIC ALGEBRAS DUAL TO THE CAYLEY-DICKSON AND CLIFFORD ALGEBRAS OR NESTED SNAKES BITE THEIR TAILS

DIANE G. DEMERS

For Elaine Yaw in honor of friendship

Abstract

The imaginary unit i of \mathbb{C}, the complex numbers, squares to -1 ; while the imaginary unit j of \mathbb{D}, the double numbers (also called dual or split complex numbers), squares to +1 . L.H. Kauffman expresses the double number product in terms of the complex number product and vice-versa with two, formally identical, dualizing formulas. The usual sequence of (structurallyelliptic) Cayley-Dickson algebras is $\mathbb{R}, \mathbb{C}, \mathbb{H}, \ldots$, of which Hamilton's quaternions \mathbb{H} generalize to the split quaternions \mathbb{M}. Kauffman's expressions are the key to recursively defining the dual sequence of structurally-hyperbolic CayleyDickson algebras, $\mathbb{R}, \mathbb{D}, \mathbb{M}, \ldots$, of which Macfarlane's hyperbolic quaternions \mathbb{M} generalize to the split hyperbolic quaternions \mathbb{M}. Previously, the structurallyhyperbolic Cayley-Dickson algebras were defined by simply inverting the signs of the squares of the imaginary units of the structurally-elliptic Cayley-Dickson algebras from -1 to +1 . Using the dual algebras $\mathbb{C}, \mathbb{D}, \mathbb{H}, \mathbb{M}, \mathbb{M}, \mathbb{M}$, and their further generalizations, we classify the Clifford algebras and their dual orientation congruent algebras (Clifford-like, noncommutative Jordan algebras with physical applications) by their representations as tensor products of algebras.

[^0]
[^0]: Received by the editors July 15, 2008.
 2000 Mathematics Subject Classification. Primary 17D99; Secondary 06D30, 15A66, 15A78, 15A99, 17A15, 17A120, 20 N 05.

 For some relief from my duties at the East Lansing Food Coop, I thank my coworkers Lindsay Demaray, Liz Kersjes, and Connie Perkins, nee Summers.

