Unspecified Journal Volume 00, Number 0, Pages 000–000 S ????-????(XX)0000-0

STRUCTURALLY-HYPERBOLIC ALGEBRAS DUAL TO THE CAYLEY-DICKSON AND CLIFFORD ALGEBRAS

OR NESTED SNAKES BITE THEIR TAILS

DIANE G. DEMERS

For Elaine Yaw in honor of friendship

ABSTRACT. The imaginary unit i of \mathbb{C} , the complex numbers, squares to -1; while the imaginary unit j of \mathbb{D} , the *double numbers* (also called *dual* or *split* complex numbers), squares to +1. L.H. Kauffman expresses the double number product in terms of the complex number product and vice-versa with two, formally identical, dualizing formulas. The usual sequence of (structurallyelliptic) Cayley-Dickson algebras is $\mathbb{R}, \mathbb{C}, \mathbb{H}, ...,$ of which Hamilton's quaternions $\mathbb H$ generalize to the split quaternions $\mathbb N$. Kauffman's expressions are the key to recursively defining the dual sequence of structurally-hyperbolic Cayley-Dickson algebras, $\mathbb{R},\mathbb{D},\mathbb{M},...,$ of which Macfarlane's hyperbolic quaternions \mathbb{M} generalize to the split hyperbolic quaternions M. Previously, the structurallyhyperbolic Cayley-Dickson algebras were defined by simply inverting the signs of the squares of the imaginary units of the structurally-elliptic Cayley-Dickson algebras from -1 to +1. Using the dual algebras \mathbb{C} , \mathbb{D} , \mathbb{H} , \mathbb{M} , \mathbb{M} , \mathbb{M} , and their further generalizations, we classify the Clifford algebras and their dual orientation congruent algebras (Clifford-like, noncommutative Jordan algebras with physical applications) by their representations as tensor products of algebras.

Received by the editors July 15, 2008.

²⁰⁰⁰ Mathematics Subject Classification. Primary 17D99; Secondary 06D30, 15A66, 15A78, 15A99, 17A15, 17A120, 20N05.

For some relief from my duties at the East Lansing Food Coop, I thank my coworkers Lindsay Demaray, Liz Kersjes, and Connie Perkins, nee Summers.