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Abstract. The correlated grade form of twisted blades (twisted simple multivec-

tors) faithfully renders in symbols their native geometric structure. The discovery

of this paper’s nonassociative Clifford-like algebra was driven by trying to calcu-

late exterior products of straight and twisted multivectors directly in a basis of

this form. The key was found to be the orientation congruent (OC) algebra. This

paper is being published electronically in about ten sections, each offered as soon

as written. In this first section we axiomatize the orientation congruent algebra

by generators and relations. The next section derives the sign factor function σ

and proves that the Clifford product times it is the multiplication of an explic-

itly Clifford-like algebra isomorphic to the orientation congruent algebra. Later

sections are planned to show how to calculate the OC product in Mathemat-

ica and Clical; to define the orientation congruent contraction operators, deduce

their properties, derive other expressions for them, and use them to compute the

OC product within the exterior algebra using a modified Cartan decomposition

formula; to develop the algebra’s product sequence graph with labeled edges; to

derive a predictor of a null associator as a function of the grades of the three

elements in it; to prove the associomediative property of the algebra’s counit; to

develop matrix representations (under a nonassociative matrix product) of the

orientation congruent product; and to discuss the motivating application per se

and as inspiration for the first set of axioms.
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Preface

In this paper, as is sufficient for an initial development, we limit the base
vector space (upon which the larger vector spaces of the exterior, Clifford and
orientation congruent algebras may be constructed) to a finite dimension over
the reals R. And, although we might easily adopt Rn, the standard notation
for a finite-dimensional vector space over R, to symbolize the base vector space
we prefer instead to use V n. The symbol V n has the disadvantage of requiring
the awkward variation V n(R) to explicitly specify the scalar field. However, we
make this choice because of Bossavit’s warning1 that the usual notation confuses
a vector space V n derived from physical modeling with a vector space Rn that
is not only unnecessarily basis-dependent,2 but also carries topological, metric,
or other properties that may or may not apply to V n.

The superscript in the symbol V n indicates, of course, the dimension of the
base space. Unless otherwise stated, we assume the dimension of V appearing
with no superscript to also be n.

Two more common Clifford algebra notations are reserved for other purposes
in this paper. Therefore, the reversion of a multivector A, sometimes denoted
with a tilde as Ã, is instead symbolized by a superscript dagger as A†. And the
grade involution of A, often denoted with a hat as Â, is instead symbolized by
a right hooked overline as A, or by a superscript symbol derived from it, the
upper right “corner,” as Aq.

Also, we use the clear and simple notation Z[a, b] defined so that for all
a, b ∈ R it is the inclusive interval of integers { i | i ∈ Z and a ≤ i ≤ b }. Other
notations used in this paper that are standard or slightly modified are sometimes
explained when introduced; those that are invented for new concepts are, of
course, always explained.

To publish this research as quickly as possible this paper will be divided by
section into about ten PDF files. As soon as a section is written its file will be
available for download from my website http://felicity.freeshell.org.

We begin at the heart of this paper, an axiomatic formulation of the orienta-
tion congruent algebra, and journey outward. Unfortunately, this order reverses
the natural course of development from motivating problem to general princi-
ples. But it is the fastest way to make the vital core of these ideas available.

Nevertheless, we briefly mention that the notation used in the application
that drove the discovery of the orientation congruent algebra, the correlated
grade form, is an almost exact symbolic analog of twisted multivectors (as well
as twisted multicovectors or multiforms) in their native geometric representation
as determined by measurement procedures for the quantities of physical theories.
The orientation congruent algebra was specifically developed to calculate with
twisted objects on their own terms, so to speak.

1See Ref. [3], p. 2, fn. 3, and some of his other works.
2The notation Rn is also commonly used for the vector space of all n-tuples which are the

components of any vector in V n with respect to some basis.

http://felicity.freeshell.org
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1 An Axiom System for the Orientation Con-

gruent Algebra

In this section we first discuss the nondegenerate quadratic form Qp,q, defin-
ing terms and notations for it and the two algebras of our interest associated
with it. We then present a deductive foundation for the Clifford algebra C`p,q of
a nondegenerate quadratic form Qp,q in terms of generators of and relations on
its elements(a GR axiom system for short). Next we give a similar axiomatic
formulation for the orientation congruent algebra OCp,q that is derived from the
one for the corresponding Clifford algebra C`p,q by modifying two of its axioms
and adding two new ones. Although we give only GR axiom sets in this first
section of the paper, in the penultimate subsection we discuss some alternative
axiomatic approaches. Finally, the last subsection presents the multiplication
tables for some low order Clifford and orientation congruent algebras.

1.1 The Nondegenerate Quadratic Form Qp,q and Associ-

ated Algebras

Let us define the parallel relationships of the notations Q, Qp,q, and Qn;
C`(Q), C`p,q, and C`n; and OC(Q), OCp,q, and OCn. Here n ∈ Z[1,∞] and
p, q ∈ Z[0,∞] with p ≥ 1 or q ≥ 1.3 First we need the notions of a general
quadratic form Q and its associated symmetric bilinear form BQ.

4

Definition 1.1 (Fauser [7], p. 3)
A quadratic form on a vector space V n over R is a map Q : V n → R such that

Q(αx) = α2Q(x) for all α ∈ R and x ∈ V , and (1.1a)

BQ(x, y) =
1

2
(Q(x+ y)−Q(x)−Q(y)) for all x, y ∈ V n, (1.1b)

where BQ:V
n × V n → R is the symmetric bilinear form associated with Q by

the polarization relation given by eq. (1.1b).

A quadratic form on V n such that Q(x) 6= 0 for all x ∈ V n is said to be
nondegenerate. Let Q be a nondegenerate quadratic form on V n. If there exists
an indexed set of mutually orthogonal5 vectors { e1, . . . , ep, ep+1, . . . , ep+q } for

3Here we have used the notation Z[a, b] ≡ { i | i ∈ Z and a ≤ i ≤ b } introduced in the
Preface.

4A map with two arguments such that B:U × V → W , where U , V , are W are vector
spaces over R, is said to be bilinear iff it is linear in both of its arguments. That is, B(x +
y, z) = B(x, z) + B(y, z), B(x, y + z) = B(x, y) + B(x, z), and B(αx, βy) = αβ B(x, y) for all
α, β ∈ R. The form part of its name means that for BQ we have W = R in the definition
of bilinearity just given. Also the word symmetric implies that U = V , since it means that
BQ(x, y) = BQ(y, x).

5That is, BQ(ei, ej) = 0, if i 6= j. Note also that these vectors are not necessarily normal-
ized to unit length.



2 1.2. GR Axioms for the Clifford Algebra C`p,q

V n such that for all ei

Q(ei)

{
> 0, for 1 ≤ i ≤ p, and

< 0, for p+ 1 ≤ i ≤ p+ q = n,

we say that Q is of signature (p, q)6 and we may write Qp,q to signify this. If
q = 0, we then have p = n; whereupon we say Q is of positive signature n and
we may write Qn to indicate it. Also if p = 0, we then have q = n; whereupon
we say Q is of negative signature n and we may write Q0,n to indicate that.

We may also represent that a nondegenerate quadratic form Qp,q , Qn, or
Q0,n exits for the vector space V n by writing V p,q , V n,0, or V 0,n, respec-
tively.7 We symbolize the corresponding Clifford algebras by C`p,q, C`n, and
C`0,n; and the corresponding orientation congruent algebras by OCp,q, OCn,
and OC0,n.

8 When discussing the Clifford or orientation congruent algebra of a
general quadratic form Q, or when the signature (p, q) of Q is understood from
context, we may also write C`(Q) or OC(Q), respectively. And when referring to
the nondegenerate quadratic form of signature (p,q) associated with the Clifford
algebra C`p,q, we will usually write simply Q instead of Qp,q.

1.2 GR Axioms for the Clifford Algebra C`p,q of a Nonde-

generate Quadratic Form

Before we give a set of axioms for OCp,q we first introduce a compact ax-
iomatic definition of C`p,q adapted from Lounesto’s presentation.9 Then we will
expand this compact definition into a longer list of 15 axioms in three sets. Fi-
nally, after modifying this axiomatic formulation for C`p,q, we obtain a system
of 17 axioms for OCp,q.

Hereafter the term multivector shall refer to any element of the Clifford alge-
bra C`p,q (or the orientation congruent algebraOCp,q) including those containing
a scalar or vector component. Also the Clifford algebra product shall be denoted
by an open dot ◦.10

Definition 1.2 (by Generators and Relations11)
An associative algebra over R with unit 1 is the Clifford algebra C`p,q of a
nondegenerate quadratic form Q on V n (with the Clifford product symbolized by

6This (p, q) is, of course, the physicist’s signature, not s = p − q, the mathematician’s
version.

7Note that we do not use V n as a brief form of V nn,0, as we do for the corresponding no-
tations for the Clifford and orientation congruent algebras, because we reserve V n to indicate
the vector space of dimension n that does not necessarily have a quadratic form associated
with it.

8The degenerate algebras C`0,0 and OC0,0 also exist, but are not associated with a quadratic
form since they are isomorphic with R.

9See Ref. [10], pp. 190–2. Chapters 14, 21, and 22 of Ref. [10] also give several other
definitions of a Clifford algebra.

10Usually Clifford multiplication is indicated by juxtaposition but here we prefer to distin-
guish between it and orientation congruent multiplication by giving each its own symbol: an
open dot ◦, and a circled open dot ¸, respectively.
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an open dot ◦) if it contains V n and R = R · 1 as distinct subspaces so that
(1) x ◦ x = Q(x) for all x ∈ V n,
(2) V n generates C`p,q as an algebra over R, and
(3) C`p,q is not generated by any proper subset of V

n.

As Lounesto remarks condition (3) of Def. 1.2 ensures that C`p,q so defined
is a universal object in the category theoretic sense and that the dimension of
C`p,q is 2n. Roughly stated, the universality of an object means that it is unique
up to isomorphism under a change of basis and that it is of the maximum size
allowed by its definition.12 Applied works commonly use a long set of axioms
similar to those we give next to define the Clifford algebra C`p,q; however, usually
these works do not also mention the mathematically sophisticated refinement of
condition (3).

For reference and completeness we will now spell out Lounesto’s axiomatic
definition for the Clifford algebra C`p,q of a nondegenerate quadratic form in a
longer list of three sets of five axioms.13 This list starts with two sets of five
axioms which are the standard vector space axioms; however, now the vector
space contains the multivectors in C`p,q rather than just the vectors in the base
space V n. The first set of axioms gives the properties of multivector addition;
the second set, the properties of two-sided scalar multiplication. To these first
ten we add the algebraic axioms for Clifford multiplication of multivectors given
in Axiom Set III.

Axiom III.2 below assumes that R ⊆ C`p,q; that is, that scalars are multivec-
tors. Similarly, Axiom III.5 assumes that V n ⊆ C`p,q; that is, that vectors are
multivectors. However, in a more careful interpretation, one says that R and
V n are present in C`p,q only as isomorphic images. The approach adopted here
of identifying R and V n with their images in C`p,q creates redundancies in our
axiom system that are discussed in detail in the footnotes. There we see that
most of the axioms in the second set are subsumed and mirrored in those of the
third set; scalar multiplication of multivectors will have become, after all, just
Clifford multiplication by a scalar, and so must be consistent with it.

The first axiom set spells out that the set of multivectors, C`p,q, is an abelian
group under the operation of multivector addition. The group operation is sym-
bolized by the addition sign +.

11After Lounesto [10], p. 190.
12For a more detailed discussion of universality under the name unique factorization prop-

erty, and in the context of the tensor product of vector spaces, see Shaw [15], pp. 274–7. See
also Perwass’s thesis [12], p. 18.

13These axioms for C`p,q were adapted from those of Perwass [13], pp. 22–24. Shaw ([14],
pp. 6,9) was also consulted for the vector space properties postulated in Axiom Set I. But
note that this axiom system must be supplemented with conditions (2) and (3), and the
requirement that R and V n are distinct subspaces, all from Def. 1.2 due to Lounesto.
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Axiom Set I Addition of Multivectors (in the Vector Space C`p,q)

There exists a binary operation called multivector addition, symbolized by the
addition sign +, and that is said to produce the sum of two multivectors, such
that for all A,B,C ∈ C`p,q

I.1

I.2

I.3

I.4

I.5

. A+B ∈ C`p,q , Existence and closure of sum

. A+B = B +A, Commutativity

. (A+B) + C = A+ (B + C), Associativity

. A+ 0 = A, and Existence of an identity

. A+ (−A) = 0. Existence of an inverse14

In the second axiom set and below the elements of R are called scalars.

Axiom Set II Two-Sided Scalar Multiplication of Multivectors (in the Vector
Space C`p,q)

There exists a binary operation called scalar multiplication, and symbolized by
juxtaposition, such that for all A,B ∈ C`p,q, a ∈ V n, and α, β ∈ R

II.1

II.2

II.3

II.4

II.5a

II.5b

. αA,Aα ∈ C`p,q, Existence and closure of scalar product

. Aα = αA, Commutativity15

. (αβ)A = α(βA), Associativity of left scalar multiplication

. 1A = A, Existence of a left identity

. (α+ β)A = αA+ βA, and Distributivity of lsm16over scalar addition

. α(A +B) = αA+ αB. Distributivity of lsm over mv. addition

Definition 1.3
An algebra over R is a vector space W together with a bilinear17 binary opera-
tion, m, called the algebra’s product or multiplication, such that m:W ×W →
W as m: (x, y) 7→ m(x, y). Sometimes m(x, y) is written as xm©y, where m©
is usually some more abstract symbol such as ◦, or, simply by juxtaposing the
arguments, as xy.

Adding the third set of axioms turns the vector space C`p,q into an associative
algebra and relates the quadratic form Q associated with V n to the Clifford
square of the vectors in C`p,q. This algebra inherits a unit from the vector space
by Axioms II.4 and III.2.

14This axiom is derivable from others in the two sets of vector space axioms and the field
properties of R if we define −A to be the result of the scalar multiplication (−1)A.

15Since R is a field, and thus has a commutative multiplication, it is not necessary to assume
the existence of right scalar multiplication Aα in Axiom II.1. Axiom II.2 may then be taken
as a definition of right scalar multiplication as Aα ≡ αA. See Shaw [14], p. 9, Rem. (b).

16We use “lsm” as short for “left scalar multiplication.”
17A binary operation is bilinear iff it is linear in both of its arguments. Bilinearity implies

distributivity of the product over vector space addition. Nevertheless, we explicitly include
the distributive property in the axioms. For a more general defintion of bilinearity see fn. 4.
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Axioms III.4 and III.5 have been placed at the end of the list because these
two of the fifteen will be substantially modified for the orientation congruent
algebra OCp,q.

Axiom Set III Clifford Multiplication of Multivectors (in the Algebra C`p,q)

There exists an algebraic product called Clifford multiplication, and symbolized
by an open dot ◦, such that for all A,B,C ∈ C`p,q, a ∈ V n, and α ∈ R

III.1

III.2

III.3a

III.3b

III.4

III.5

. A ◦B ∈ C`p,q, Existence and closure of product

. α ◦A = αA, A ◦ α = Aα, Equality with l. & r. scalar mult.18

. A ◦ (B + C) = A ◦B +A ◦ C, Left distributivity over mv. add.

. (B + C) ◦A = B ◦A+ C ◦A, Rt. distributivity over mv. add.19

. (A ◦B) ◦ C = A ◦ (B ◦ C), and Associativity20

. a2 ≡ a ◦ a = Q(a). Equality of the square and quad-

ratic form of vectors

Implicit in the expressions of Axiom Set III is the usual parentheses-sparing
convention of performing Clifford multiplications before performing multivector
additions. Specifically, in Axioms III.3a and III.3b this operator precedence rule
is applied on the right sides of the equations.

1.3 GR Axioms for the Orientation Congruent Algebra

OCp,q of a Nondegenerate Quadratic Form

We consider now another list of 15 axioms parallel to the one above, but
modified. Then, we add two new axioms to obtain a list of 17 axioms21 that
will provide the axiomatic foundation for the OCp,q algebra.

The first ten axioms in Axiom Sets I and II and the first three axioms in
Axiom Set III are changed, but only trivially with the replacement of the terms
and symbols referring to Clifford algebra with those referring to orientation
congruent algebra. Therefore, we do not list the first ten of these axioms in
their modified forms; however, we do list the first three axioms of Axiom Set
III so changed. Next, we briefly describe the material changes and additions to
Axiom Set III before making them.

18As mentioned above, we have assumed that R ⊆ C`(Q); that is, that scalars are multi-
vectors. Therefore, the properties of scalar multiplication given in Axiom Set II are partially
subsumed under those of Clifford multiplication given in this axiom set. In particular, this
axiom and the one above it make Axiom II.1 redundant and it may be dropped.

19These Axioms III.3a and III.3b of the distributivity of Clifford multiplication, with the
help of Axiom III.2, imply the (now redundant) Axioms II.5a and II.5b of the distributivity
of left scalar multiplication.

20This Axiom III.4 of the associativity of Clifford multiplication, with the help of Axiom
III.2, implies the (now redundant) Axiom II.3 of the associativity of scalar multiplication.

21As with that for C`p,q this axiom system for OCp,q must also be supplemented with
suitably modified conditions similar to (2) and (3) of Def. 1.2 and the requirement that R and
V n are distinct subspaces, again all adapted from Lounesto ([10], p. 190).
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The nontrivial changes required to the axioms in Axiom Set III are to

1) restrict the product used in Axiom III.4 for associativity from the orien-
tation congruent product to the outer product,

2) extend the domain of Axiom III.5 for the equality of the algebra product
square of a vector and its quadratic form to nonscalar blades,

3) add a new axiom for the existence of a counit ωA of a set of multivectors
A , and

4) add a second new axiom for the generalized commutativity of the right
ωA-complement that supplements the restricted Axiom III.4.

All numbers of the modified axioms for the orientation congruent algebra
will be marked with primes to indicated their correspondence with the origi-
nal axioms for the Clifford algebra. For consistency the numbers of the new
sixteenth and seventeenth axioms will also be primed.

Axiom Set IIII′ Orientation Congruent Multiplication of Multivectors (in the
Algebra OCp,q)

There exists an algebraic product called orientation congruent multiplication,
and symbolized by an circled open dot ¸, such that for all A,B,C ∈ OCp,q and
α ∈ R

III.1′

III.2′

III.3a′

III.3b′

.. A¸B ∈ OCp,q, Existence and closure of product

. α¸A = αA, A¸ α = Aα, Equality with l. & r. scalar mult.

. A¸ (B + C) = A¸B +A¸ C, Left distributivity over mv. add.

. (B + C)¸A = B ¸A+ C ¸A. Rt. distributivity over mv. add.

Before presenting the next axiom we pause to make some definitions which
will also be used later.

Definition 1.4

a) A multivector A ∈ OCp,q is called an r-blade iff, for some r ∈ Z[2, n], it
can be written as an orientation congruent multiproduct, with any grouping into
binary products, of r mutually anticommuting vectors. That is, A = a1 ¸ · · ·¸
ai ¸ · · ·¸ ar where all ai ∈ V n and ai ¸ aj = −aj ¸ ai for all i 6= j.

b) We also define the term 1-blade to mean vector, and the term 0-blade to
mean scalar. And we interpret the multiproduct notation A = a1 ¸ · · · ¸ ai ¸

· · · ¸ ar to be the vector A = a1, when r = 1, and some scalar A = α when
r = 0.

c) All zero-valued r-blades are considered to be equivalent for any r ∈ Z[0, n].
Thus, 0 represents a blade of indeterminate grade.

d) An r-vector is defined as a linear combination of r-blades.
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Definition 1.5

a) The outer product of Ar and Bs, written with a wedge ∧, is defined for
any r-vector and s-vector Ar, Bs ∈ OCp,q as the (r + s)-grade part of their
orientation congruent product

Ar ∧ Bs ≡ 〈Ar ¸Bs〉r+s. (1.2)

b) The outer product of general multivectors A,B ∈ OCp,q is then defined by

A ∧B ≡
∑

r,s

〈A〉r ∧ 〈B〉s =
∑

r

〈A〉r ∧ B =
∑

s

A ∧ 〈B〉s. (1.3)

Now we may continue with the next axiom.

Axiom Set IIII′ Orientation Congruent Multiplication (continued)

And such that for all A,B,C ∈ OCp,q

III.4′.. (A ∧ B) ∧ C = A ∧ (B ∧ C). Associativity of outer product

And such that for any A ∈ OCp,q such that A is the nonscalar r-blade A =
a1 ¸ · · ·¸ ai ¸ · · ·¸ ar

III.5′.. A2 ≡ A¸A = Equality of the square of an

Q(a1) · · ·Q(ai) · · ·Q(ar). r-blade and the product of the

quadratic forms of its vectors

In the next axiom (and the sequel) we use the adjective unitary to refer to
equality to ±1; elsewhere we use the phrase the unitaries to refer to 1 and −1.

Axiom Set IIII′ Orientation Congruent Multiplication (continued)

And such that for all nonempty sets of multivectors ∅ ⊂ A ⊆ OCp,q there exists
a (nonunique) blade called a counit22 of A and symbolized by a subscripted,
boldface, lower case omega as ωA , such that ωA ∈ OCp,q and for all A ∈ A

III.6a′

III.6b′

III.6c′

.. ωA 6= ±1, Nonunitary

. ωA
2 ≡ ωA ¸ ωA = ±1, and Unitary OC square

. A¸ ωA = ωA ¸A. A-universal commutativity

Applying the last axiom we make the following definitions.

22The name “counit” is a contraction of the phrase “coscalar unit.” The “unit” part of the
name is appropriate because a counit behaves algebraically like the unit. Indeed, for the set
A = OCp,q , the unitaries, 1 and −1, are the only elements other than Ω and −Ω (see the next
Def. 1.6) that have properties (b) and (c) of Axiom III.6′ . And the “co” part of the name is
consistent with the definition of a coscalar as an element of OCp,q that has a complementary

grade or cograde of 0 = n− k because it also has a grade of k = n in the set of multivectors
OCp,q with n = p+ q. Generally, when working in the algebra OCp,q , a minimal grade counit
ωA of a nonempty set of multivectors A has a cograde of 0 = m − k (or a grade of k = m)
relative to the smallest odd m = r + s such that A ⊆ OCr,s ⊆ OCp,q .
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Definition 1.6

a) If A = OCp,q we call any ωA “a” counit of the algebra OCp,q and we
usually write such an ωA using a boldface uppercase omega as Ω.

b) In fact, if n = p+ q is even there are no counits of “OCp,q” and we have
only an imperfect orientation congruent algebra (of a nondegenerate quadratic
form) that does not satisfy the last two Axioms III.6 ′ and III.7 ′ of Axiom Set
III ′. We symbolize an imperfect orientation congruent algebra as IOCp,q.

23

c) But, if n is odd there are exactly two counits of the algebra that differ
only by sign. These are ±e1 ∧ · · · ∧ ei ∧ · · · ∧ en for ei ∈ B = { e1, e2, . . . , en },
where B is an ordered, orthonormal set of basis vectors for V n. Choosing one
of these counits establishes an orientation for OCp,q. An Ω so chosen will be
called “the” counit of the algebra OCp,q, or, simply, the couint. We may write
it with an underline as Ω. If an ordered, orthonormal set of basis vectors for
V n has been specified and no choice for the couint has been explicitly made, we
assume that the counit is the one which is the product of the basis vectors in
basis order Ω = e1 ∧ · · · ∧ en.

24

In preparation for the next and final axiom of Axiom Set III′ we define the
following notions and notations.

Definition 1.7
We use a superscript ωA attached to a multivector A ∈ OCp,q to mean

AωA ≡ A¸ ωA . (1.4)

And, similarly, for left-sided multiplication by ωA we define
ωAA ≡ ωA ¸A. (1.5)

We call these operations right (left) ωA-complementation, or counit comple-
mentation by ωA , and we give them precedence over orientation congruent,
Clifford, and outer product multiplications.

Axiom Set IIII′ Orientation Congruent Multiplication (finished)

And such that for all A that are nonempty sets of multivectors, ∅ ⊂ A ⊆ OCp,q,
all couints ωA of A , and all A,B ∈ A

III.7′.. AωA ¸B = A¸BωA = Generalized commutativity of

(A¸B)ωA . right ωA-complementation

Precisely now with the presentation of this final axiom in Axiom Set III′

we have completed the construction a GR axiom system for the orientation
congruent algebra of a nondegenerate quadratic form.

23An IOCr,s with m = r + s can always be extended to an OCp,q with n = m + 1 = p + q

and having primed basis vectors by adding another basis vector em+1
′ = en

′ (making p = r

and q = s+1) or er+1
′ = ep

′ (making p = r+1 and q = s) in a signature-ordered, orthogonal
set of basis vectors.

24In this case the counit Ω is the same element in OCp,q as what is called, in the language
of geometric algebra (Clifford algebra given a geometric interpretation), the unit pseudoscalar
I associated with a orthonormal frame (set of basis vectors) for C`p,q . Also the q part of the
signature (p, q) of the quadratic form of OCp,q determines the sign of the orientation congruent
square of a counit of the algebra by Ω2 = (−Ω)2 = (−1)q .
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Remarks 1.1

a) The last two Axioms III.6′ and III.7′ together with Axiom III.4′ replace
Axiom III.4 expressing the associativity of the Clifford product. Associativity
is just one member of the class of possible “bracket shifting rules.”

b) Axiom III.4′ partially replaces the general associativity of the Clifford
product with that of the outer product. The outer product is derived by a grade
selection from the orientation congruent product. Equivalently, this axiom may
also be viewed as restricting the domain of applicability of the orientation con-
gruent product to two blades whose component vectors mutually anticommute
when combined as one group. This axiom has a direct analog as a theorem in
all Clifford algebras C`p,q.

c) Axioms III.6′ and III.7′ supplement Axiom III.4′ with a pair of commuta-
tive and bracket shifting rules both involving ωA , and both more complicated,
but generally applicable. These two axioms have direct analogs as theorems in
all Clifford algebras C`p,q with odd n = p+ q.

d) In summary, we might say that to transform the axioms for C`p,q into those
for OCp,q we have traded an expansion of the domain of applicability of Axiom
III.5 from vectors to blades in Axiom III.5′ for a restriction of the domain of
applicability of Axiom III.4 with its consequent fragmentation into the three
Axioms III.4′, III.6′, and III.7′.

1.4 Other Axiom Systems

This subsection discusses some alternative axiomatic formulations of the
orientation congruent algebra and previews the next section.

The literature provides other axiomatic formulations of Clifford algebras of
varying generality; we will consider their adaptability to the orientation con-
gruent algebra. These other Clifford algebra axiom systems range, for example,
from those describing a Clifford algebra as an ideal of a tensor algebra ([10],
pp. 193f), or describing it in category-theoretic terms as the universal object of
a quadratic algebra ([10], pp. 192f), or embedding it as a subalgebra of the asso-
ciated exterior algebra’s endomorphism algebra through the Chevalley-operator
representation (which Chevalley [5] based on the Cartan decomposition for-
mula),25 or describing it as a Hopf gebra26 using tensor algebra and category
theory expressed in commutative and tangle diagrams ([8], chs. 3– 5), to pro-
viding a multiplication rule for basis blades represented by n-tuples of binary
digits called multi-indices ([10], ch. 21).27

Only three of these approaches to the axiomatization of Clifford algebra are
directly convertible to the orientation congruent algebra. One is the definition

25This decomposition formula is credited to E. Cartan by Crumeyrolle ([6], p. 44) and
AbÃlamowicz ([2] p. 463). Chevalley’s method is also used by Lounesto ([10], ch. 22), Crumey-
rolle ([6], p. 45), and Oziewicz [11]. It is also implicit in the paper of Fernández, Moya, and
Rodrigues ([9], p. 15).

26This is not a misprint. Without going into details, a Hopf gebra is a more general structure
than a Hopf algebra ([8], p. 65).

27This last is really a specialized form of GR axiomitization.
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as a universal object of quadratic algebras. The modification required is simply
using nonassociative quadratic algebras in place of the (assumed) associative
quadratic algebras and adding other relations to represent Axioms III.4′, III.5′,
III.6′, and III.7′. However, since this very abstract definition is nonconstructive,
it is not useful for calculating the orientation congruent product.

It is only the last two definitions, one based on Hopf gebra and the other on
a multiplication rule for basis blades that are both adaptable and useful. That
is because the other approaches are based on intrinsically associative algebras.
Hopf gebras, however, are not ruled out; associativity is not necessary for their
definition ([8], p. 65). Also as demonstrated by Fauser [8] the Hopf gebraic
approach is very fruitful in producing grade-free computational algorithms for
very general forms of Clifford algebras.

The last definition from a multiplication rule for basis blades is easily gen-
eralizable to Clifford-like algebras. These are essentially the algebras of the
Clifford product but as modified by a sign rule that may differ from the stan-
dard Clifford algebra one ([10], pp. 284ff). The Clifford-like algebras, however,
are not necessarily associative. They may also have other properties that vary
from those of Clifford algebra. In the next section we will construct the ex-
plicitly Clifford-like sigma orientation congruent algebra σOCp,q which uses a
multiplication that is the Clifford product times the sign factor function σ.

In the next section we also prove the deductive equivalence of the set of
primed axioms for the orientation congruent algebra OCp,q with that of the
unprimed axioms for the Clifford algebra C`p,q supplemented by an existence
axiom for the sigma orientation congruent product. In so doing we establish
that the sigma orientation congruent algebra of a nondegenerate quadratic form
is isomorphic to the corresponding orientation congruent algebra. Then, instead
of reasoning directly from the axioms of the current section, we can also prove
theorems for the orientation congruent algebra by interpreting its product as
the sigma orientation congruent product and manipulating ordinary algebraic
expressions derived from the sign factor function while citing verified Clifford
algebra theorems.

Actually, in the rest of this paper the sigma form of the orientation congru-
ent product will be the basis for investigating the OCp,q algebra. Indeed, while
simply proving the equivalence of the orientation congruent product and the
sigma orientation congruent product in the next section other proofs of some
assertions made in this section will naturally fall out as byproducts. One state-
ment with such an incidental proof is that the orientation congruent algebra
OCp,q exists only for base spaces V n of odd dimension, and, complementarily,
that the imperfect orientation congruent algebra IOCp,q exists only for base
spaces V n of even dimension.

1.5 Multiplication Tables

We end this section with the multiplication tables for the Clifford algebra
C`3 (Tab. 1.1), and the orientation congruent algebras OC3 (Tab. 1.2) and OC5

(Tab. 1.3). In these tables the basis blades are written with multi-indices so
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that, for example, e23 = e2 ◦ e3 and e23 = e2 ¸ e3. Also the counits of the
orientation congruent algebras are written as Ω = e123 = e1 ¸ e2 ¸ e3 and
Ω = e12345 = e1 ¸ e2 ¸ e3 ¸ e4 ¸ e5.

28 We have also used this same symbol Ω
for the pseudoscalar e123 = e1 ◦ e2 ◦ e3 of the Clifford algebra C`3.

The underlined entries in the orientation congruent algebra multiplication
tables are oppositely signed compared to those in the tables for the correspond-
ing Clifford algebras. Also the entries in red highlighted cells in all tables are
negatively signed.

In the orientation congruent algebra multiplication tables (Tabs. 1.2 and
1.3) the red highlighting makes the reflection symmetry of the negative signs
about the central horizontal and vertical lines easy to see. In the multiplication
table for the Clifford algebra C`3 (Tab. 1.1) the negative signs have no obvious
symmetry. Both the symmetry in Tabs. 1.2 and 1.3 and its lack in Tab. 1.1
result from displaying these tables in a canonical form specific to the orientation
congruent algebra.

In all three of these tables the factor basis blades in the leftmost column
and in the top row are in graded, reflected complementary order. In addition,
an ordering for the multi-indices of the basis blades has been chosen so that
the set of basis blades is coherently oriented. These two requirements define
a canonical arrangement for the orientation congruent algebra multiplication
tables (but not for the Clifford algebra ones).

Similarly, we can define a canonical arrangement of the Clifford algebra mul-
tiplication tables comprisingGray code order ([10], pp. 281ff) for the factor basis
blades and increasing numerical order within the sequence of multi-indices for
each basis blade. Clifford algebra multiplication tables in this form display their
negatively signed entries symmetrically, just as do the orientation congruent al-
gebra multiplication tables in their canonical form. However, this symmetry is
of a different kind than that of the orientation congruent algebra multiplication
tables. These remarks on the symmetry of canonically arranged multiplication
tables for the Clifford and orientation congruent algebras will be expanded in a
later section of this paper.

28Because it conflicts with another usage in these tables we have forgone the underlining of
omegas to symbolize the counits of these OC algebras (the convention established in Def. 1.6
of the previous section).



12 1.5. Multiplication Tables

b

a¸ b 1 e1 e2 e3 e12 e31 e23 Ω

1 1 e1 e2 e3 e12 e31 e23 Ω

e1 e1 1 e12 −e31 e2 −e3 Ω e23

e2 e2 −e12 1 e23 −e1 Ω e3 e31

e3 e3 e31 −e23 1 Ω e1 −e2 e12
a

e12 e12 −e2 e1 Ω −1 e23 −e31 −e3

e31 e31 e3 Ω −e1 −e23 −1 e12 −e2

e23 e23 Ω −e3 e2 e31 −e12 −1 −e1

Ω Ω e23 e31 e12 −e3 −e2 −e1 −1

Table 1.1: The Multiplication Table for the Clifford Algebra C`3. The factors are
in graded, reflected complementary order. Their indices are ordered so that the
the basis blades have coherent orientations. Red cells contain negative entries.

b

a¸ b 1 e1 e2 e3 e12 e31 e23 Ω

1 1 e1 e2 e3 e12 e31 e23 Ω

e1 e1 1 e12 −e31 −e2 e3 Ω e23

e2 e2 −e12 1 e23 e1 Ω −e3 e31

e3 e3 e31 −e23 1 Ω −e1 e2 e12
a

e12 e12 e2 −e1 Ω 1 −e23 e31 e3

e31 e31 −e3 Ω e1 e23 1 −e12 e2

e23 e23 Ω e3 −e2 −e31 e12 1 e1

Ω Ω e23 e31 e12 e3 e2 e1 1

Table 1.2: The Multiplication Table for the Orientation Congruent AlgebraOC3.
The same orderings of factors and their indices are used in this table as for the
corresponding Clifford algebra C`3. Red cells contain negative entries. The
underlined entries are oppositely signed compared to those in Tab. 1.1.
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