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Abstract. The correlated grade form of twisted multivectors faithfully renders

in symbols their native geometric structure. The discovery of this paper’s nonas-

sociative Clifford-like algebra was driven by trying to calculate exterior products

of straight and twisted multivectors directly in a basis of blades (simple multi-

vectors) in this form. The key was found to be the orientation congruent (OC)

algebra. This paper is Part I of a two part series. Part II (to be published later)

will develop the motivating application just mentioned. In the first section we ax-

iomatize the orientation congruent algebra by generators and relations. The next

section derives the sign factor function σ and proves that the Clifford product

times it is the multiplication of an explicitly Clifford-like algebra isomorphic to

the orientation congruent algebra. Later sections show how to calculate the OC

product in Mathematica and Clical; define the orientation congruent contraction

operators, deduce their properties, derive other expressions for them, and use

them to compute the OC product within the exterior algebra using a modified

Cartan decomposition formula; develop the algebra’s product sequence graph with

labeled edges; explore the symmetries of and the matrices and orthogonal func-

tions derivable from some forms of the Clifford and orientation congruent algebra

multiplication tables; present a predictor of a null associator as a function of

the grades of the three elements in it; state a conjecture on the associomediative

property of counits; and develop matrix representations (under a nonassociative

matrix product) of the orientation congruent product.
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1 Introduction

This paper is intended to be Part I of a two-part series on the orientation
congruent (OC) algebra and its motivating application. I am making both this
first part (on the OC algebra per se) available for download from my website
http://felicity.freeshell.org as well as the second part (on its application
to computing the exterior products of straight and twisted multivectors).

This pair of papers has two aims:

Part I) to treat the OC algebra per se by developing the axioms, algebraic
properties, multiplication table—in normal and graph-theoretic forms, multipli-
cation algorithms, and matrix representations for the OC algebra;

Part II) to treat the OC algebra as applied by developing the correlated
grade form and the generalized exterior product for straight and twisted multi-
vectors represented in it.

This first paper begins in section 1 with the theoretical heart of the orienta-
tion congruent algebra, its axiomatic formulation. Unfortunately, this beginning
reverses the natural course of development from motivating problem to general
principles. A full exposition of the application that drove the discovery of the
orientation congruent algebra will have to wait until Part II of this two-paper
set. Nevertheless, we briefly discuss it in the next paragraph.

The orientation congruent (or OC) algebra arose from the desire to com-
pletely, that is, pictorially, symbolically, and computationally, respect the native
inner and outer orientations of the straight and twisted multicovectors (linear
k-forms) making up electromagnetic fields. Some authors, first Schouten in
Ref. [38], and then, following him, notably Burke in Refs. [12], [13], [14], and
[15], and Jancewicz in Refs. [28] and [29] have shown how to respect the inner
and outer orientations of such geometric objects in their graphical represen-
taions. And Burke, with his so-called William’s twisted notation, ([15], pp. 5f)
came close to respecting the outer orientions of twisted differential forms in their
symbolic representaion. The second paper will complete this trend by showing
how to compute the exterior product of staight and twisted multivectors and
multicovectors directly in a symbolic form faithfully representing their native in-
ner and outer orientations. The author’s discovery of the correlated grade form
(CGF ) to represent inner and outer oriented geometric objects and the OC al-
gebra to compute their exterior product in this representation was essential to
realizing this goal.

SOME CONVENTIONS

In this paper, as is sufficient for an initial development, I limit the base
vector space (upon which the larger vector spaces of the exterior, Clifford and
orientation congruent algebras may be constructed) to a finite dimension over
the reals R. And, although I might easily adopt Rn, the standard notation for
a finite-dimensional vector space over R, to symbolize the base vector space I
prefer instead to use V n. The symbol V n has the disadvantage of requiring the

http://felicity.freeshell.org


2 1. Introduction

awkward variation V n(R) to explicitly specify the scalar field. However, I make
this choice because of Bossavit’s warning1 that the usual notation confuses a
vector space V n derived from physical modeling with a vector space Rn that is
not only unnecessarily basis-dependent,2 but also carries topological, metric, or
other properties that may or may not apply to V n.

The superscript in the symbol V n indicates, of course, the dimension of the
base space. Unless otherwise stated, the reader may assume the dimension of
V appearing with no superscript to also be n.

Two more common Clifford algebra notations are reserved for other purposes
in this series of papers. Therefore, the reversion of a multivectorA, denoted with
a tilde as Ã by P. Lounesto et al., is instead symbolized by a superscript dagger
as A† à la D. Hestenes et al. And the grade involution of A, often denoted
with a hat as Â following Lounesto and other workers, is instead symbolized
by the author’s invention, a right hooked overline, as A, or by the superscript
symbol derived from it, the upper right “corner,” as Aq. Other notations used in
this paper that are standard or slightly modified are sometimes explained when
introduced; those that are created for new concepts or that are designed to be
more compact without becoming imprecise are, of course, always explained.

1See Ref. [7], p. 2, fn. 3, and some of his other works.
2The notation Rn is also commonly used for the vector space of all n-tuples which are the

components of any vector in V n with respect to some basis.
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2 An Axiom System for the Orientation Con-

gruent Algebra

In this section we first discuss the nondegenerate quadratic form Qp,q, defin-
ing terms and notations for it and the two algebras of our interest associated
with it. We then present a deductive foundation for the Clifford algebra C`p,q of
a nondegenerate quadratic form Qp,q in terms of generators of and relations on
its elements(a GR axiom system for short). Next we give a similar axiomatic
formulation for the orientation congruent algebra OCp,q that is derived from the
one for the corresponding Clifford algebra C`p,q by modifying two of its axioms
and adding one new one. Although we give only GR axiom sets in this first
section of the paper, in the penultimate subsection we discuss some alternative
axiomatic approaches. Finally, the last subsection presents the multiplication
tables for some low order Clifford and orientation congruent algebras.

2.1 The Nondegenerate Quadratic Form Qp,q and Associ-

ated Algebras

Let us define the parallel relationships of the notations Q, Qp,q, and Qn;
C`(Q), C`p,q, and C`n; and OC(Q), OCp,q, and OCn. Here n, p, and q are integers
such that n ≥ 1, and p, q ≥ 0 with p ≥ 1 or q ≥ 1.First, we need the notions of
a general quadratic form Q and its associated symmetric bilinear form BQ.

3

Definition 2.1 (Fauser [23], p. 3)
A quadratic form on a vector space V n over R is a map Q : V n → R such that

Q(αx) = α2Q(x) for all α ∈ R and x ∈ V , and (2.1a)

BQ(x, y) =
1

2
(Q(x+ y)−Q(x)−Q(y)) for all x, y ∈ V n, (2.1b)

where BQ:V
n × V n → R is the symmetric bilinear form associated with Q by

the polarization relation given by eq. (2.1b).

A quadratic form on V n such that Q(x) 6= 0 for all x ∈ V n is said to be
nondegenerate. Let Q be a nondegenerate quadratic form on V n. If there exists
an indexed set of mutually orthogonal4 vectors { e1, . . . , ep, ep+1, . . . , ep+q } for
V n such that for all ei

Q(ei) > 0, for 1 ≤ i ≤ p, and

Q(ei) < 0, for p+ 1 ≤ i ≤ p+ q = n,

3A map with two arguments such that B:U × V → W , where U , V , are W are vector
spaces over R, is said to be bilinear iff it is linear in both of its arguments. That is, B(x +
y, z) = B(x, z) + B(y, z), B(x, y + z) = B(x, y) + B(x, z), and B(αx, βy) = αβ B(x, y) for all
α, β ∈ R. The form part of its name means that for BQ we have W = R in the definition
of bilinearity just given. Also the word symmetric implies that U = V , since it means that
BQ(x, y) = BQ(y, x).

4That is, BQ(ei, ej) = 0, if i 6= j. Note also that these vectors are not necessarily normal-
ized to unit length.
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we say that Q is of signature (p, q)5 and we may write Qp,q to signify this. If
q = 0, we then have p = n; whereupon we say Q is of positive signature n and
we may write Qn to indicate it. Also if p = 0, we then have q = n; whereupon
we say Q is of negative signature n and we may write Q0,n to indicate that.

We may also represent that a nondegenerate quadratic form Qp,q , Qn, or
Q0,n exists for the vector space V n by writing V p,q, V n,0, or V 0,n, respec-
tively.6 We symbolize the corresponding Clifford algebras by C`p,q, C`n, and
C`0,n; and the corresponding orientation congruent algebras by OCp,q, OCn,
and OC0,n.

7 When discussing the Clifford or orientation congruent algebra of a
general quadratic form Q, or when the signature (p, q) of Q is understood from
context, we may also write C`(Q) or OC(Q), respectively. And when referring to
the nondegenerate quadratic form of signature (p,q) associated with the Clifford
algebra C`p,q, we will usually write simply Q instead of Qp,q.

2.2 GR Axioms for the Clifford Algebra C`p,q of a Nonde-

generate Quadratic Form

Before we give a set of axioms for OCp,q we first introduce a compact ax-
iomatic definition of C`p,q adapted from Lounesto’s presentation.8 Then we will
expand this compact definition into a longer list of 15 axioms in three sets. Fi-
nally, after modifying this axiomatic formulation for C`p,q, we obtain a system
of 16 axioms for OCp,q.

Hereafter the term multivector shall refer to any element of the Clifford alge-
bra C`p,q (or the orientation congruent algebraOCp,q) including those containing
a scalar or vector component. Also the Clifford algebra product shall be denoted
by an open dot ◦.9

Definition 2.2 (by Generators and Relations10)
An associative algebra over R with unit 1 is the Clifford algebra C`p,q of a
nondegenerate quadratic form Q on V n (with the Clifford product symbolized by
an open dot ◦) if it contains V n and R = R · 1 as distinct subspaces so that

(1) x ◦ x = Q(x) for all x ∈ V n,
(2) V n generates C`p,q as an algebra over R, and
(3) C`p,q is not generated by any proper subset of V n.

5This (p, q) is, of course, the physicist’s signature, not s = p − q, the mathematician’s
version.

6Note that we do not use V n as a brief form of V n,0, as we do for the corresponding no-
tations for the Clifford and orientation congruent algebras, because we reserve V n to indicate
the vector space of dimension n that does not necessarily have a quadratic form associated
with it.

7The degenerate algebras C`0,0 and OC0,0 also exist, but are not associated with a quadratic
form since they are isomorphic with R.

8See Ref. [33], pp. 190–2. Chapters 14, 21, and 22 of Ref. [33] also give several other
definitions of a Clifford algebra.

9Usually Clifford multiplication is indicated by juxtaposition but here we prefer to distin-
guish between it and orientation congruent multiplication by giving each its own symbol: an
open dot ◦, and a circled open dot ¸, respectively.
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As Lounesto remarks condition (3) of Def. 2.2 ensures that C`p,q so defined is
a universal object in the category theoretic sense and that the dimension of C`p,q
is 2n. Roughly stated, the universality of an object means that it is unique up to
isomorphism under a change of basis and that it is of the maximum size allowed
by its definition.11 Applied works commonly use a long set of axioms similar to
those we give next to define the Clifford algebra C`p,q; however, usually their
authors do not also mention the refinement of condition (3).

For reference and completeness we will now spell out Lounesto’s axiomatic
definition for the Clifford algebra C`p,q of a nondegenerate quadratic form in a
longer list of three sets of five axioms.12 This list starts with two sets of five
axioms which are the standard vector space axioms; however, now the vector
space contains the multivectors in C`p,q rather than just the vectors in the base
space V n. The first set of axioms given by Axiom Set I defines the properties
of multivector addition; the second set given by Axiom Set II, the properties
of two-sided scalar multiplication. Axiom Set III adds the last five axioms that
define the algebraic properties of Clifford multiplication.

Axiom III.2 below assumes that R ⊆ C`p,q; that is, that scalars are multivec-
tors. Similarly, Axiom III.5 assumes that V n ⊆ C`p,q; that is, that vectors are
multivectors. However, in a more careful interpretation, one says that R and
V n are present in C`p,q only as isomorphic images. The approach adopted here
of identifying R and V n with their images in C`p,q creates redundancies in our
axiom system that are discussed in detail in the footnotes. There we see that
most of the axioms in the second set are subsumed and mirrored in those of the
third set; scalar multiplication of multivectors will have become, after all, just
Clifford multiplication by a scalar, and so must be consistent with it.

The first set of axioms defines the set of multivectors, C`p,q , as an abelian
group under the operation of multivector addition. The group operation is
written as an addition sign +.

10After Lounesto [33], p. 190.
11For a more detailed discussion of universality under the name unique factorization prop-

erty, and in the context of the tensor product of vector spaces, see Shaw [40], pp. 274–7. See
also Perwass’s thesis [35], p. 18.

12These axioms for C`p,q were adapted from those of Perwass [36], pp. 22–24. Shaw ([39],
pp. 6,9) was also consulted for the vector space properties postulated in Axiom Set I. But
note that this axiom system must be supplemented with conditions (2) and (3), and the
requirement that R and V n are distinct subspaces, all from Def. 2.2 due to Lounesto.
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Axiom Set I Addition of Multivectors (in the Vector Space C`p,q)

There exists a binary operation called multivector addition, symbolized by the
addition sign +, and which is said to produce the sum of two multivectors, such
that for all A,B,C ∈ C`p,q

I.1

I.2

I.3

I.4

I.5

. A+B ∈ C`p,q , Existence and closure of sum

. A+B = B +A, Commutativity

. (A+B) + C = A+ (B + C), Associativity

. A+ 0 = A, and Existence of an identity

. A+ (−A) = 0. Existence of an inverse13

In the second axiom set and below the elements of R are called scalars.

Axiom Set II Two-Sided Scalar Multiplication of Multivectors (in the Vector
Space C`p,q)

There exists a binary operation called scalar multiplication, symbolized by jux-
taposition, such that for all A,B ∈ C`p,q, a ∈ V n, and α, β ∈ R

II.1

II.2

II.3

II.4

II.5a

II.5b

. αA,Aα ∈ C`p,q, Existence and closure of scalar product

. Aα = αA, Commutativity14

. (αβ)A = α(βA), Associativity of left scalar multiplication

. 1A = A, Existence of a left identity

. (α+ β)A = αA+ βA, and Distributivity of lsm15over scalar addition

. α(A +B) = αA+ αB. Distributivity of lsm over mv. addition

Definition 2.3
An algebra over R is a vector space W together with a bilinear16 binary opera-
tion, m, called the algebra’s product or multiplication, such that m:W ×W →
W as m: (x, y) 7→ m(x, y). Sometimes m(x, y) is written as xm©y, where m©
is usually some more abstract symbol such as ◦, or, simply by juxtaposing the
arguments, as xy.

Adding the third set of axioms turns the vector space C`p,q into an associative
algebra and relates the quadratic form Q associated with V n to the Clifford
square of the vectors in C`p,q. This algebra inherits a unit from the vector space
by Axioms II.4 and III.2.

13This axiom is derivable from others in the two sets of vector space axioms and the field
properties of R if we define −A to be the result of the scalar multiplication (−1)A.

14Since R is a field, and thus has a commutative multiplication, it is not necessary to assume
the existence of right scalar multiplication Aα in Axiom II.1. Axiom II.2 may then be taken
as a definition of right scalar multiplication as Aα ≡ αA. See Shaw [39], p. 9, Rem. (b).

15We use “lsm” as short for “left scalar multiplication.”
16A binary operation is bilinear iff it is linear in both of its arguments. Bilinearity implies

distributivity of the product over vector space addition. Nevertheless, we explicitly include
the distributive property in the axioms. For a more general defintion of bilinearity see fn. 3.
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Axioms III.4 and III.5 have been placed at the end of the list because these
two of the fifteen will be substantially modified for the orientation congruent
algebra OCp,q.

Axiom Set III Clifford Multiplication of Multivectors (in the Algebra C`p,q)

There exists an algebraic product called Clifford multiplication, symbolized by
an open dot ◦, such that for all A,B,C ∈ C`p,q, a ∈ V n, and α ∈ R

III.1

III.2

III.3a

III.3b

III.4

III.5

. A ◦B ∈ C`p,q, Existence and closure of product

. α ◦A = αA, A ◦ α = Aα, Equality with l. & r. scalar mult.17

. A ◦ (B + C) = A ◦B +A ◦ C, Left distributivity over mv. add.

. (B + C) ◦A = B ◦A+ C ◦A, Rt. distributivity over mv. add.18

. (A ◦B) ◦ C = A ◦ (B ◦ C), and Associativity19

. a2 ≡ a ◦ a = Q(a). Equality of a the square of a vector

and its quadratic form

Implicit in the expressions of Axiom Set III is the usual parentheses-sparing
convention of performing Clifford multiplications before performing multivector
additions. Specifically, in Axioms III.3a and III.3b this operator precedence rule
is applied on the right sides of the equations.

2.3 GR Axioms for the Orientation Congruent Algebra

OCp,q of a Nondegenerate Quadratic Form

We consider now another list of 15 axioms parallel to the one above, but
modified. Then, we add one new axiom to obtain a list of 16 axioms20 that will
provide the axiomatic foundation for the OCp,q algebra.

The first ten axioms in Axiom Sets I and II and the first three axioms in
Axiom Set III are changed, but only trivially with the replacement of the terms
and symbols referring to Clifford algebra with those referring to orientation
congruent algebra. Therefore, we do not list the first ten of these axioms in
their modified forms; however, we do list the first three axioms of Axiom Set
III so changed. Next, we briefly describe the material changes and additions to
Axiom Set III before making them.

17As mentioned above, we have assumed that R ⊆ C`(Q); that is, that scalars are multi-
vectors. Therefore, the properties of scalar multiplication given in Axiom Set II are partially
subsumed under those of Clifford multiplication given in this axiom set. In particular, this
axiom and the one above it make Axiom II.1 redundant and it may be dropped.

18These Axioms III.3a and III.3b of the distributivity of Clifford multiplication, with the
help of Axiom III.2, imply the (now redundant) Axioms II.5a and II.5b of the distributivity
of left scalar multiplication.

19This Axiom III.4 of the associativity of Clifford multiplication, with the help of Axiom
III.2, implies the (now redundant) Axiom II.3 of the associativity of scalar multiplication.

20As with that for C`p,q this axiom system for OCp,q must also be supplemented with
suitably modified conditions similar to (2) and (3) of Def. 2.2 and the requirement that R and
V n are distinct subspaces, again all adapted from Lounesto ([33], p. 190).
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The nontrivial changes required to the axioms in Axiom Set III are to

1) restrict the product used in Axiom III.4 for associativity from the orien-
tation congruent product to the outer product,

2) extend the domain of Axiom III.5 for the equality of the algebra product
square of a vector and its quadratic form to nonscalar blades,

3) add a new Axiom III.6′, supplementing the restricted Axiom III.4, that,
in the given algebra or its extension by one dimension, requires the existence of
a counit ωA of a set of multivectors A with two key properties: A-universal
commutativity and generalized commutativity of the right ωA-complement.

All numbers of the modified axioms for the orientation congruent algebra
will be marked with primes to indicated their correspondence with the original
axioms for the Clifford algebra. For consistency the number of the new sixteenth
axiom will also be primed.

Axiom Set IIII′ Orientation Congruent Multiplication of Multivectors (in the
Algebra OCp,q)

There exists an algebraic product called orientation congruent multiplication,
and symbolized by an circled open dot ¸, such that for all A,B,C ∈ OCp,q and
α ∈ R

III.1′

III.2′

III.3a′

III.3b′

.. A¸B ∈ OCp,q, Existence and closure of product

. α¸A = αA, A¸ α = Aα, Equality with l. & r. scalar mult.

. A¸ (B + C) = A¸B +A¸ C, Left distributivity over mv. add.

. (B + C)¸A = B ¸A+ C ¸A. Rt. distributivity over mv. add.

Before presenting the next axiom we pause to make some definitions which
will also be used later.

Definition 2.4

a) A multivector A ∈ OCp,q is called an r-blade if, for some integer 2 ≤
r ≤ n, it can be written as an orientation congruent multiproduct, with any
grouping into binary products, of r mutually anticommuting vectors. That is,
A = a1 ¸ · · · ¸ ai ¸ · · · ¸ ar where all ai ∈ V n and ai ¸ aj = −aj ¸ ai
for all i 6= j. Note that we have used the convention that an unparenthesized
multiproduct represents some arbitrary parenthesization of the multiproduct into
binary products.

b) We also define the term 1-blade to mean vector, and the term 0-blade to
mean scalar. And we interpret the multiproduct notation A = a1 ¸ · · · ¸ ai ¸
· · · ¸ ar to be the vector A = a1, when r = 1, and some scalar A = α when
r = 0.

c) For any integer 0 ≤ r ≤ n all zero-valued r-blades are considered to be
equivalent. Thus, 0 represents a blade of indeterminate grade.

d) An r-vector is defined as a linear combination of r-blades.
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Definition 2.5

a) The outer product of Ar and Bs, written with a wedge ∧, is defined for
any r-vector and s-vector Ar, Bs ∈ OCp,q as the (r + s)-grade part of their
orientation congruent product

Ar ∧ Bs ≡ 〈Ar ¸Bs〉r+s. (2.2)

b) The outer product of general multivectors A,B ∈ OCp,q is then defined by

A ∧B ≡
∑

r,s

〈A〉r ∧ 〈B〉s =
∑

r

〈A〉r ∧ B =
∑

s

A ∧ 〈B〉s. (2.3)

Now we may continue with the next axiom.

Axiom Set IIII′ Orientation Congruent Multiplication (continued)

Orientation congruent multiplication determines through Def. 2.5 above the ex-
istence of the outer product as another algebraic product on the set OCp,q such
that for all A,B,C ∈ OCp,q

III.4′.. (A ∧ B) ∧ C = A ∧ (B ∧ C). Associativity of outer product

Orientation congruent multiplication is such that for any A ∈ OCp,q, with A the
nonscalar r-blade a1 ¸ · · ·¸ ai ¸ · · ·¸ ar,

III.5′.. A2 ≡ A¸A = Equality of the square of an

Q(a1) · · ·Q(ai) · · ·Q(ar). r-blade and the product of the

quadratic forms of its vectors

The next axiom introduces the counit. The notions and notations of the fol-
lowing Def. 2.6 provide a naturally more compact way to write some expressions
of Axiom III.6′ involving a counit.

Definition 2.6
We use a superscript ωA attached to a multivector A ∈ OCp,q to mean

AωA ≡ A¸ ωA . (2.4)

And, similarly, for left-sided multiplication by ωA we define
ωAA ≡ ωA ¸A. (2.5)

We call these operations right (left) ωA-complementation, or counit comple-
mentation by ωA , and we give them precedence over orientation congruent,
Clifford, and outer product multiplications.

Axiom Set IIII′ Orientation Congruent Multiplication (finished)

Orientation congruent multiplication is such that within OCp,q, or its arbi-
trary extension by one dimension (which always exists),21 there exixts for all
nonempty sets of multivectors A a (nonunique) nonscalar, unit magnitude blade
called a counit22 of A , symbolized in boldface by ωA , such that for all (not nec-
essarily distinct) A,B ∈ A

III.6a′

III.6b′
.. A¸ ωA = ωA ¸A. A-universal commutativity

.. AωA ¸B = A¸BωA = Generalized commutativity of

(A¸B)ωA . right ωA-complementation
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Applying the last axiom we make the following definitions.

Definition 2.7

a) If A = OCp,q we call any ωA ∈ OCp,q “a” counit of the algebra OCp,q and
we usually write such an ωA using a boldface uppercase omega as Ω. We may
then say that OCp,q is a perfect orientation congruent (POC) algebra and write
it as POCp,q.

b) In fact, if n = p+ q is even there are no counits of OCp,q. Then we have
only an imperfect orientation congruent (IOC) algebra whose pseudoscalar does
not satisfy Axiom III.6 ′.We symbolize such an algebra as IOCp,q.

23 We keep the
words “ orientation congruent,” and the symbols OC and OCp,q general so that
they may refer to either case. When we do not know if an orientation congruent
algebra has a counit or if we know it does not have one we will use the usual
symbol I for the pseudoscalar.

c) But, if n is odd there are exactly two counits of the algebra that differ
only by sign. These are ±e1 ∧ · · · ∧ ei ∧ · · · ∧ en for ei ∈ B = { e1, e2, . . . , en },
where B is an ordered, orthonormal set of basis vectors for V n. Choosing one
of these counits establishes an orientation for OCp,q. An Ω so chosen will be
called “the” counit of the algebra OCp,q, or, simply, the couint. We may write
it with an underline as Ω. If an ordered, orthonormal set of basis vectors for
V n has been specified and no choice for the couint has been explicitly made, we
assume that the counit is the one which is the product of the basis vectors in
basis order Ω = e1 ∧ · · · ∧ en.

24

Precisely now with the presentation of this final axiom in Axiom Set III′

we have completed the construction a GR axiom system for the orientation
congruent algebra of a nondegenerate quadratic form.

21The author thanks John Browne [11] for suggesting that the even-dimensional spaces be
included in the definition of an orientation congruent algebra.

22The name “counit” is a contraction of the phrase “coscalar unit.” (However, when working
with Hopf algebras or other areas of mathematics where the term counit is also used for an
unrelated concept, one may employ the full phrase coscalar unit.) The “unit” part of the
name is appropriate because a counit behaves algebraically like the unit. Indeed, for the set
A = OCp,q 1 and −1 are the only elements other than Ω and −Ω (see the next Def. 2.7) that
are of unit magnitude and have properties (a) and (b) of Axiom III.6′. And the “co” part
of the name is consistent with the definition of a coscalar as an element of OCp,q that has a
complementary grade or cograde of 0 = n−k because it also has a grade of k = n in the set of
multivectors OCp,q with n = p + q. Generally, when working in the algebra OCp,q , a minimal
grade counit ωA of a nonempty set of multivectors A has a cograde of 0 = m−k (or a grade
of k = m) relative to the smallest odd m = r + s such that A ⊆ OCr,s ⊆ OCp,q .

23As we have postulated an IOCr,s with m = r + s can always be extended to an POCp,q

with n = m + 1 = p + q and having primed basis vectors by adding another basis vector
em+1

′ = en
′ (making p = r and q = s + 1) or er+1

′ = ep
′ (making p = r + 1 and q = s) in

a signature-ordered, orthogonal set of basis vectors. An IOC algebra is actually a subalgebra

of the next higher-dimensional POC algebra.
24In this case the counit Ω is the same element in OCp,q as what is called, in the language

of geometric algebra (Clifford algebra given a geometric interpretation), the unit pseudoscalar
I associated with an orthonormal frame (set of basis vectors) for C`p,q . Also, the q part of the
signature (p, q) of the quadratic form of OCp,q determines the sign of the orientation congruent
square of a counit of the algebra by Ω2 = (−Ω)2 = (−1)q .
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Remarks 2.1

a) The last Axiom III.6′ along with Axiom III.4′ replaces Axiom III.4 express-
ing the associativity of the Clifford product. Associativity is just one member
of the class of possible “bracket shifting rules.”

b) Axiom III.4′ partially replaces the general associativity of the Clifford
product with that of the outer product. The outer product is derived by a grade
selection from the orientation congruent product. Equivalently, this axiom may
be restated to postulate the associativity of the OC product of the component
vectors of two blades if those component vectors mutually anticommute under
the orientation congruent product when combined as one group. This axiom
has a direct analog as a theorem in all Clifford algebras C`p,q .

c) Axiom III.6′ supplements Axiom III.4′ with a pair of commutative and
bracket shifting rules both involving ωA , and both more complicated, but gen-
erally applicable. Axiom III.4′ has a direct analog as a theorem in all Clifford
algebras. But part (a) of Axiom III.6′ of has a direct analog as a theorem in
only Clifford algebras C`p,q with odd n = p+ q.

d) In summary, we might say that to transform the axioms for C`p,q into
those for OCp,q we have traded an expansion of the domain of applicability of
Axiom III.5 from vectors to blades in Axiom III.5′ for a restriction of the domain
of applicability of Axiom III.4 with its consequent fragmentation into the two
Axioms III.4′, III.6′.

2.4 Other Axiom Systems

The literature provides other axiomatic formulations of Clifford algebras of
varying generality. Here we will consider their adaptability to the orientation
congruent algebra.25

These other Clifford algebra axiom systems range, for example, from those
describing a Clifford algebra as an ideal of a tensor algebra ([33], pp. 193f), or
describing it in category-theoretic terms as the universal object of a quadratic al-
gebra ([33], pp. 192f), or embedding it as a subalgebra of the associated exterior
algebra’s endomorphism algebra through the Chevalley-operator representation
(which Chevalley [18] based on the Cartan decomposition formula),26 or describ-
ing it as a Hopf gebra27 using tensor algebra and category theory expressed in
commutative and tangle diagrams ([24], chs. 3– 5), to providing a multiplication
rule for basis blades represented by n-tuples of binary digits called multi-indices
([33], ch. 21).28

25Subsection 5.1 has more remarks on axiomatizations.
26This decomposition formula is credited to E. Cartan by Crumeyrolle ([20], p. 44) and

AbÃlamowicz ([2] p. 463). Chevalley’s method is also used by Lounesto ([33], ch. 22), Crumey-
rolle ([20], p. 45), and Oziewicz [34]. It is also implicit in the paper of Fernández, Moya, and
Rodrigues ([25], p. 15). Also see subsection 5.1 for more remarks on axiomatizations.

27This is not a misprint. Without going into details, a Hopf gebra is a more general structure
than a Hopf algebra ([24], p. 65).

28This last is really a specialized form of GR axiomitization.
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Only three of these approaches to the axiomatization of Clifford algebra are
directly convertible to the orientation congruent algebra. One is the definition
as a universal object of quadratic algebras. The modification required is simply
using nonassociative quadratic algebras in place of the (assumed) associative
quadratic algebras and adding other relations to represent Axioms III.4′, III.5′,
and III.6′. However, since this very abstract definition is nonconstructive, it is
not useful for calculating the orientation congruent product.

It is only the last two definitions, one based on Hopf gebra and the other on
a multiplication rule for basis blades that are both adaptable and useful. That
is because the other approaches are based on intrinsically associative algebras.
Hopf gebras, however, are not ruled out; associativity is not necessary for their
definition ([24], p. 65). Also as demonstrated by Fauser [24] the Hopf gebraic
approach is very fruitful in producing grade-free computational algorithms for
very general forms of Clifford algebras.

The last definition from a multiplication rule for basis blades is easily gen-
eralizable to Clifford-like algebras. These are essentially the algebras of the
Clifford product but as modified by a sign rule that may differ from the stan-
dard Clifford algebra one ([33], pp. 284ff). The Clifford-like algebras, however,
are not necessarily associative. They may also have other properties that vary
from those of the Clifford algebras. In the following section we will construct
the explicitly Clifford-like sigma orientation congruent algebra σOCp,q . As sug-
gested above we will fashion the product of the sigma orientation congruent
algebra from the Clifford product times a sign factor function σ.

In section 3 we also prove the deductive equivalence of the set of primed
axioms for the orientation congruent algebra OCp,q with that of the unprimed
axioms for the Clifford algebra C`p,q supplemented by an existence axiom for
the sigma orientation congruent product. In so doing we establish that the
sigma orientation congruent algebra of a nondegenerate quadratic form is iso-
morphic to the corresponding orientation congruent algebra. Then, instead of
reasoning directly from the axioms of the current section, we can also prove
theorems for the orientation congruent algebra by interpreting its product as
the sigma orientation congruent product and manipulating ordinary algebraic
expressions derived from the sign factor function while citing verified Clifford
algebra theorems.

Actually, in the sequel to section 3 the sigma form of the orientation con-
gruent product will be the basis for investigating the OCp,q algebra. Indeed,
in section 3 while simply proving the equivalence of the orientation congruent
product and the sigma orientation congruent product other proofs of some asser-
tions made in this section will naturally fall out as byproducts. One statement
with such an incidental proof is that a perfect orientation congruent algebra
POCp,q exists in all and only those base spaces V n of odd dimension, or, com-
plementarily, that an imperfect orientation congruent algebra IOCp,q exists in
all and only those base spaces V n of even dimension.
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2.5 Multiplication Tables

We end with the multiplication tables for the Clifford algebra C`3 (Tab. 2.1),
and the orientation congruent algebras OC3 (Tab. 2.2) and OC5 (Tab. 2.5). In
these tables the basis blades are written with multi-indices so that, for example,
e23 = e2◦e3 or e2¸e3 depending on which algebra appears in the table. Also the
counits of the two orientation congruent algebras are written in omega notation
as Ω = e123 = e1 ¸ e2 ¸ e3 or Ω = e12345 = e1 ¸ e2 ¸ e3 ¸ e4 ¸ e5 depending
on the algebra.29 We write the pseudoscalar of C`3 as I = e123 = e1 ◦ e2 ◦ e3.

The underlined entries in the orientation congruent algebra multiplication ta-
bles are oppositely signed compared to those in the tables for the corresponding
Clifford algebras. Also in all tables the entries in red-colored cells are negatively
signed; while the entries in white-colored cells are positively signed.

Tabs. 2.2 and 2.5 show a certain form of the multiplication tables for the
algebras OC3 and OC5. The cell coloring in these tables makes the reflection
symmetry of the signs of the products about the central horizontal and vertical
axes easy to see. Tab. 2.1 shows the same form of the multiplication table for the
Clifford algebra C`3. Here the pattern of cell coloring has no obvious symmetry.

Both the reflection symmetries in Tabs. 2.2 and 2.5 and their lack in Tab. 2.1
result from displaying these tables in a canonical form specific to the orienta-
tion congruent algebra. The arrangement of these tables is an example of a
multiplication table canonical form (MTCF) of type OC1 .

Any MTCF for an algebra is determined by just two criteria: 1) the ordering
chosen for the multi-indices of each basis blade; and 2) the ordering of the basis
blades in the indicial leftmost column and top row of the table. Because the
full definition of a MTCF of type OC1 is rather complicated we defer it to a
later section. However, we may roughly say that a type OC1 MTCF satisfies
criterion 1) by ordering the multi-indices of the basis blades so that as a set they
are coherently oriented (in a specific way) relative to the couinit Ω. Also we
may roughly say that it satifies criterion 2) by placing the factor basis blades in
the indicial column and row in a kind of graded, reflected complementary order.
As the “1” in “OC1” suggests these two requirements define just one of several
related multiplication table canonical forms.

For Clifford algebras we can define a MTCF of type CL1 that is increasing
numerical order within the multi-index sequences of each basis blade and Gray
code order ([33], pp. 281ff) for the factor basis blades in the indicial column
and row. If a Clifford algebra multiplication table is in CL1 canonical form, the
signs of the products display reflection symmetry about the central vertical axis
just as they do for an orientation congruent algebra multiplication table in OC1
form. However, the second sign symmetry pattern differs: it becomes vertical
translation symmetry between adjacent rows paired off starting from the first.
And now it is the OC3 multiplication table in CL1 canonical form whose product
signs display no obvious symmetries. Further discussion is deferred until §7.

29Because it conflicts with another usage in these tables (defined in the next paragraph) we
have forgone the underlining of these omegas to symbolize the counits of these OC algebras
(the convention established in Def. 2.7 of the previous section).
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b

a ◦ b 1 e1 e2 e3 e12 e31 e23 I

1 1 e1 e2 e3 e12 e31 e23 I

e1 e1 1 e12 −e31 e2 −e3 I e23

e2 e2 −e12 1 e23 −e1 I e3 e31

e3 e3 e31 −e23 1 I e1 −e2 e12
a

e12 e12 −e2 e1 I −1 e23 −e31 −e3

e31 e31 e3 I −e1 −e23 −1 e12 −e2

e23 e23 I −e3 e2 e31 −e12 −1 −e1

I I e23 e31 e12 −e3 −e2 −e1 −1

Table 2.1: The Multiplication Table for the Clifford Algebra C`3. The factors are
in graded, reflected complementary order. Their indices are ordered so that the
the basis blades have coherent orientations. Red cells contain negative entries.

b

a¸ b 1 e1 e2 e3 e12 e31 e23 Ω

1 1 e1 e2 e3 e12 e31 e23 Ω

e1 e1 1 e12 −e31 −e2 e3 Ω e23

e2 e2 −e12 1 e23 e1 Ω −e3 e31

e3 e3 e31 −e23 1 Ω −e1 e2 e12
a

e12 e12 e2 −e1 Ω 1 −e23 e31 e3

e31 e31 −e3 Ω e1 e23 1 −e12 e2

e23 e23 Ω e3 −e2 −e31 e12 1 e1

Ω Ω e23 e31 e12 e3 e2 e1 1

Table 2.2: The Multiplication Table for the Orientation Congruent AlgebraOC3.
The same orderings of factors and their indices are used in this table as for the
corresponding Clifford algebra C`3 in Tab. 2.1. Red cells contain negative entries.
The underlined entries are oppositely signed compared to those in Tab. 2.1.



The Orientation Congruent Algebra. Part I D. G. Demers 15

b

a ◦ b 1 e1 e12 e2 e23 I e13 e3

1 1 e1 e12 e2 e23 I e13 e3

e1 e1 1 e2 e12 I e23 e3 e13

e12 e12 −e2 −1 e1 e13 −e3 −e23 I

e2 e2 −e12 −e1 1 e3 −e13 −I e23
a

e23 e23 I −e13 −e3 −1 −e1 e12 e2

I I e23 −e3 −e13 −e1 −1 e2 e12

e13 e13 −e3 e23 −I −e12 e2 −1 e1

e3 e3 −e13 I −e23 −e2 e12 −e1 1

Table 2.3: The Multiplication Table for the Clifford Algebra C`3. The factors
are in Gray code order. Their indices are in increasing numerical order. Red
cells contain negative entries.

b

a¸ b 1 e1 e12 e2 e23 Ω e13 e3

1 1 e1 e12 e2 e23 Ω e13 e3

e1 e1 1 −e2 e12 Ω e23 −e3 e13

e12 e12 e2 1 −e1 −e13 e3 e23 Ω

e2 e2 −e12 e1 1 −e3 −e13 −Ω e23
a

e23 e23 Ω e13 e3 1 e1 −e12 −e2

Ω Ω e23 e3 −e13 e1 1 −e2 e12

e13 e13 e3 −e23 −Ω e12 −e2 1 −e1

e3 e3 −e13 Ω −e23 e2 e12 e1 1

Table 2.4: The Multiplication Table for the Orientation Congruent Algebra OC3.
The same orderings of factors and their indices are used in this table as for the
corresponding Clifford algebra C`3 in Tab. 2.3. Red cells contain negative entries.
The underlined entries are oppositely signed compared to those in Tab. 2.3.
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3 The Clifford-Likeness of the Orientation Con-

gruent Algebra

In this section we first derive a formula for the sign factor function σ that,
by multiplying the Clifford product, converts it to the orientation congruent
product. The sign factor function is significant for two reasons: first, it can
be used theoretically to construct proofs; second, it can be used practically
to compute the orientation congruent product by hand or through computer
algebra systems.

We then establish the validity of the sign factor function formula for the
orientation congruent product by proving that it satisfies the primed axioms
given in the last section. Actually, we explicitly prove this for only the last
three axioms in Axiom Set III′, III.4′, III.5′, and III.6′, in that these are the
only primed axioms that are either material modifications of some unprimed
axiom or are entirely new.

3.1 Sigma Orientation Congruent Product Definition by

the Sign Factor Function

In this subsection we define the Clifford-like sigma orientation congruent
algebra σOCp,q and provide formulas for computing it. For our purposes the
term Clifford-like30 shall mean that the orientation congruent product of two
basis blades of OCp,q or C`p,q can be obtained by adding a sign factor σ = ±1
to their Clifford product. The following subsection demonstrates that the OCp,q
algebra of the primed GR axioms is a Clifford-like algebra. It accomplishes this
by proving that the OCp,q algebra is identical to (or, more properly, isomorphic
with) the explicitly Clifford-like σOCp,q algebra.31

In accordance with this fundamental definition we give an explicit formula
for σ as a function of the two basis blades in the product. From this first
formula for σ as a function of two basis blades we then derive a formula for σ as
a function of the grades of any two homogeneous multivectors, but parametrized
by the grade of the t–vector part of their Clifford product. In the end, by using
the fundamental decomposition of the Clifford product, we obtain an explicit
expression for the orientation congruent product of two arbitrary multivectors
in terms of the sign factor function and their Clifford product. The proof of the
keystone algebra isomorphism Theorem 3.5 is delayed until the next subsection.

In this section general set-theoretic sets as well as sets of basis vectors32 are
written as upper case letters in a calligraphic font such asA. However, the power
set function P as well as sets of blades or general multivectors are written in

30See Lounesto ([33], pp. 284f) for a more a bit more abstract definition.
31In another view we are proving the deductive equivalence of the primed orientation con-

gruent axioms of the last section with that section’s unprimed Clifford algebra axioms but
having added to them as an axiom of existence Def. 3.1 for the (sigma) orientation congruent
product.

32We except from this rule the set of all basis vectors for an algebra which we also write in
a script font as B.
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a script font. Also #(A) denotes the cardinality of a set A; P(A), the power
set of A; Ac, the set complement of A; and ±A ≡ { a | ±a ∈ A}, the negative
extension of A. The symbol ∅ will stand for the empty set { }.

First, we define notations for an ordered, orthonormal, set of basis vectors
and various sets of basis blades derived from it. Let B = { e1, e2, . . . , en }
where n = p+ q be an ordered set33 of mutually orthogonal unit basis vectors
for OCp,q and its corresponding C`p,q. Then B∧ will signify the set of basis
blades for OCp,q and C`p,q generated from B by taking, for each subset of B,
the outer product34 of all basis vectors in it in their prescribed order.35 We use
Br to mean the set of basis blades generated by B which are of grade 2 ≤ r ≤ n.
We also make the definitions B1 ≡ B and B0 ≡ 1.

Next, we introduce a function set which is implicitly parametrized by some
ordered, orthonormal, set of basis vectors B for the orientation congruent al-
gebra OCp,q and its corresponding Clifford algebra C`p,q. We define the set
function set : ±B∧ →P(B) such that for any A ∈ ±Br

set(A) ≡





{ eij | eij ∈ B and A = ±ei1 ∧ ei2 ∧ · · · eij · · · ∧ eir } , if r ≥ 2

{ ei | ei∈ B and A = ±ei } , if r = 1

{ } , if r = 0.

Therefore, in particular, set(±ei) = { ei } for ei ∈ B, and set(±1) = ∅. We
also extend the function set in the obvious way to set : P(±B∧)→P(P(B)),
so that, in particular, set : ±B

∧ 7→P(B).

Definition 3.1
We define the sigma orientation congruent algebra of a nondegenerate quadratic
form Qp,q, denoted by σOCp,q, and with product denoted by a circled star36 ³,
as the real 2n-dimensional Clifford-like algebra that is the multilinear extension
to all multivectors of the multiplication rule

ei ³ ej = σ(ei, ej) ei ◦ ej ,
37 (3.1)

defined between all pairs of basis blades ei, ej ∈ B∧, where σ, the sign factor
function of basis blades, σ : B∧ ×B∧ → ±{ 1 }, is defined such that for any
ei, ej ∈ B∧

σ(ei, ej) = (−1)
1
2
#(A∩B)[2#(A)#(B)+#(A∩B)+1], (3.2)

where we have let A = set(ei) and B = set(ej).

33In this section B is not necessarily signature-ordered; that is, ordered such that all basis
vectors of positive signature precede those of negative signature.

34Since the vectors in B are mutually orthogonal, ei ∧ ej = ei ◦ ej = ei ¸ ej for any
ei,ej ∈ B (see [26], p. 15, eq. (89)). Therefore, B∧ = B◦ = B¸ and any basis blade of OCp,q

is a basis blade of C`p,q . Also, we take the outer product of one factor to be that factor and
the outer product of no factors to be the unit 1.

35Accordingly, the vectors in B are called the generators of OCp,q (or C`p,q).
36Here we are using the symbol ³ for the product of the algebra σOCp,q at least until we

prove that it is identical to the product ¸ of the orientation congruent algebra OCp,q .
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Now we begin to construct an explicit formula for the multilinear extension
of eqs. (3.1) and (3.2) for the sigma orientation congruent product ³ of σOCp,q
given in Def. 3.1 to arbitrary multivectors.

The next lemma provides a formula for the sign factor function in terms of
the two basis blade factors and the resultant basis blade of their Clifford product
based on the relationship between the Clifford product of two basis blades and
the symmetric difference of the sets of basis vectors “in” each of them.

Lemma 3.2 For any ei, ej ∈ B∧, if A = set(ei), B = set(ej), and C =
set(ei ◦ ej) = set(ei ³ ej) ∈ set(±B∧), we may write the sign factor function σ
of Def. 3.1 as

σ(ei, ej) = (−1)
1
8
[#(A)+#(B)−#(C)][4#(A)#(B)+#(A)+#(B)−#(C)+2]. (3.3)

Proof. As is well known, if ∆ denotes the symmetric difference operator on sets,
and \ denotes the set difference operator, then for all finite sets A and B

A ∩ B = (A ∪ B) \ (A∆B) and (3.4a)

#(A ∩ B) =
1

2
[#(A) + #(B)−#(A∆B)]. (3.4b)

Also for any ei, ej ∈ B∧ we have

set(ei)∆ set(ej) = set(ei ◦ ej) = set(ei ³ ej). (3.5)

Then it is straightforward to rewrite eq. (3.2) of Def. 3.1 as eq. (3.3). ¥

In all the above we have had set(ei ◦ ej) = set(ei ³ ej) ∈ set(±B
∧) =

P(B)38 for any ei, ej ∈ B∧, thus ensuring that σ(ei, ej) is well defined as a
closed operation. Since generally the Clifford product of arbitrary (not nec-
essarily basis) blades is no longer homogeneous, we may as well consider next
the Clifford and orientation congruent products of homogeneous multivectors
(which are not necessarily blades).

The form of eq. (3.3) for the sign factor function σ is suitable for general-
ization from products of basis blades to products of homogeneous multivectors.
Simultaneously we parametrize σ by a grade index so that it is useful when
A ◦B is a general multivector rather than a blade in ±B∧. With these changes
in the definition of the sign factor function of basis blades σ(ei, ej) in eq. (3.2)
of Def. 3.1 we obtain the definition of the sign factor function of the grades of
homogeneous multivectors σt(r, s) in eq. (3.7) of the next theorem.

37Since ei and ej are basis blades, ei ◦ ej ∈ ±B∧. Stated more generally, this becomes
±B∧ is closed under any of the exterior, Clifford, or (sigma) orientation congruent product’s.

38Or, equivalently, set(ei ◦ ej) = set(ei ³ ej) ⊆ B.
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Theorem 3.3 For any homogeneous multivectors Ar, Bs ∈ σOCp,q and C`p,q
the multilinear extension of the product ³ of the sigma orientation congruent
algebra σOCp,q given by Def. 3.1 is

Ar ³Bs =

r+s∑

t=|r−s|

〈Ar ³Bs〉t =

r+s∑

t=|r−s|

σt(r, s) 〈Ar ◦Bs〉t, (3.6)

where the sign factor function39 σt : Z[0, n]× Z[0, n] 7→ ±{ 1 }, now a function
of the grades of Ar , Bs and parametrized by the grade t ∈ Z[0, n] of the t-vector
part of Ar ◦Bs, is given by

σt(r, s) = (−1)
1
8
[r+s−t][4rs+r+s−t+2]. (3.7)

Proof. The proof is immediate from Lem. 3.2 by the multilinearity of the Clifford
product and the linearity of the grade selection operator. ¥

Using eq. (3.6) to evaluate the right hand side of the next equation we finally
obtain an expression for the sigma orientation congruent product of multivectors
in terms of the sign factor function σt(r, s) and the Clifford product.

Corollary 3.4 For all A,B ∈ σOCp,q

A³B =
∑

r,s

〈A〉r ³ 〈B〉s as evaluted by eq. (3.6). (3.8)

Proof. The proof is immediate from Lem. 3.2 by the multilinearity of the Clifford
product and the linearity of the grade selection operator. ¥

3.2 Sigma Orientation Congruent Algebra Satisfaction of

the GR Axioms

We next prove Thm. 3.5. This fundamental isomorphism theorem states
that the orientation congruent product of Cor. 3.4, derived from the sign factor
function and the fundamental decomposition of the Clifford product, and the
orientation congruent product, defined by Axiom Sets I′, II′, and III′, are equiv-
alent. Our theorem and proof closely follows a similar theorem of Lounesto and
his proof ([33], pp. 282f).

In the following proof, as is allowed, we restrict the factors in all products
to be basis blades in B∧. So from another viewpoint we are directly proving an
implicit keystone theorem that the formula for the sign factor function given by
eq. (3.2) in Def. 3.1 is correct. This equation is the foundation from which all of
Lem. 3.2, Thm. 3.3, Cor. 3.4, and the Fundamental OC Product Decomposition
Theorem (Thm. 4.2 of section 4) follow.

39Here we are about to use the convenient notation Z[a, b] ≡ { i | i ∈ Z and a ≤ i ≤ b }.



The Orientation Congruent Algebra. Part I D. G. Demers 21

Consider an arbitrary signature-ordered set of generators40 for OCp,q and
C`p,q, B = { e1, . . . , ep, ep+1, . . . , ep+q }, such that for all integers 1 ≤ i, j ≤ n,
where n = p+ q,

ei
2 = ei ¸ ei = ei ◦ ei =

{
+1, if 1 ≤ i ≤ p, and

−1, if p+ 1 ≤ i ≤ p+ q = n, and
(3.9)

ei ¸ ej = ei ◦ ej = −ej ¸ ei = −ej ◦ ei, if i 6= j.

THE FUNDAMENTAL σOC-OC ALGEBRA ISOMORPHISM THEOREM

Theorem 3.5 The real 2n-dimensional Clifford-like algebra σOCp,q that is the
multilinear extension to all multivectors of the multiplication rule

ei ³ ej = σ(ei, ej) ei ◦ ej ,

between all pairs of basis blades ei, ej ∈ B
∧, where σ is defined by eq. (3.2) of

Def. 3.1, is identical to the orientation congruent algebra OCp,q with product ¸
defined by Axiom Sets I ′, II ′, and III ′.

Proof. It is sufficient to show that σOCp,q is generated by n anticommuting
vectors with squares of ±1 given by eq. (3.9), has a unit element, and that the
blades in B∧ satisfy Axioms III.4′, III.5′, and III.6′ under the ³ product of
σOCp,q.

Consider the first requirement. Since the product of σOCp,q is simply the
Clifford product multiplied by a sign factor of ±1, it has the same set of gener-
ators B as the Clifford algebra C`p,q. Thus this requirement is fulfilled.

Next consider the second requirement. By definition, for any ei ∈ B∧,
1³ ei = σ(1, ei) 1 ◦ ei. But

σ(1, ei) = (−1)
1
2
#(∅∩set(ei))[2#(∅)#(set(ei))+#(∅∩set(ei))+1]

= (−1)0 = 1,

Inspection of eq. (3.2) shows that σ is symmetric in its arguments. Thus, 1³ei =
1◦ei = ei and both multiplications commutate. Therefore, as required, the unit
of algebra σOCp,q exists; it is the scalar 1.

PROOF FOR AXIOM III.4′′

We recall that Axiom III.4′ requires that the outer product of multivectors
is associative:

For all A,B,C ∈ OCp,q or C`p,q

(A ∧ B) ∧ C = A ∧ (B ∧ C).

40In other words, B is an arbitrary signature-ordered, orthonormal, set of basis vectors for
V n.
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Restricting A,B, and C to be homogeneous we obtain this equation:

For all Ar, Bs, Ct ∈ OCp,q or C`p,q

(Ar ∧ Bs) ∧ Ct = Ar ∧ (Bs ∧ Ct).

Subtituting the basis blades er ∈ B
r, es ∈ B

s, and et ∈ B
t we have

(er ∧ es) ∧ et = er ∧ (es ∧ et). (3.10)

Using eq. (2.2) of Def. 2.5 for the outer product we may write

〈〈er ³ es〉r+s ³ et〉r+s+t = 〈er ³ 〈es ³ et〉s+t〉r+s+t. (3.11)

Applying eq. (3.1) of Def. 3.1 gives

σ(er, es)σ(er ◦ es, et) 〈〈er ◦ es〉r+s ◦ et〉r+s+t =

σ(es, et)σ(es ◦ et, er) 〈er ◦ 〈es ◦ et〉s+t〉r+s+t. (3.12)

Now we let A = set(er), B = set(es), and C = set(et) and use eq. (3.2) to
perform the next two evaluations.

Evaluating the sign factor functions on the left hand side gives

σ(er, es)σ(er ◦ es, et) = (−1)
1
2
#(A∩B)[2#(A)#(B)+#(A∩B)+1]·

(−1)
1
2
#((A∆B)∩C)[2#(A∆B)#(C)+#((A∆B)∩C)+1]. (3.13)

Evaluating the sign factor functions on the right hand side gives

σ(es, et)σ(es ◦ et, er) = (−1)
1
2
#(B∩C)[2#(B)#(C)+#(B∩C)+1]·

(−1)
1
2
#((B∆ C)∩A)[2#(B∆ C)#(A)+#((B∆ C)∩A)+1]. (3.14)

Using eqs. (3.4b) and (3.5) we observe that iff at least one of A∩ B, A∩ B,
or A ∩ B is nonempty, both sides of eq. (3.12) are equal to 0. In this case the
values of the sign factor functions are irrelevant.

If all of A ∩ B, B ∩ C, and A ∩ C are equal to ∅, both sides of eq. (3.12)
are nonzero and the factor due to Clifford products on the left hand side of
eq. (3.12) is equal to that on the right hand side.41 In this case the question of
equality in eq. (3.12) hinges only on the values of the sign factor functions.

Examining the right hand sides of both eqs. (3.13) and (3.14), we see that
the first “cardinality factors,” #(A ∩ B) and #(B ∩ C), in the exponent of the
first −1 are obviously 0 when A ∩ B = B ∩ C = A ∩ C = ∅. Thus this first −1
raised to the power of zero becomes 1 in both eq. (3.13) and (3.14).

41For a proof see Ref. [26], p. 11, eq. 57.



The Orientation Congruent Algebra. Part I D. G. Demers 23

Consider now the first cardinality factor of the second −1 on the right hand
side of eq. (3.13); it is #((A∆B)∩C). We perform some elementary set-theoretic
manipulations42 on (A∆B) ∩ C.

(A∆B) ∩ C = [(A ∪ B) \ (A ∩ B)] ∩ C

= [(A ∪ B) ∩ (A ∩ B)c] ∩ C

= [(A ∪ B) ∩ C] ∩ (A ∩ B)c

= [(A ∩ C) ∪ (B ∩ C)] ∩ (A ∩ B)c

Since A ∩ C = B ∩ C = ∅ we find that (A∆B) ∩ C = ∅. Therefore the
first cardinality factor of the second −1 on the right hand side of eq. (3.13) is
0. This makes that exponentiated −1 become 1. Similar manipulations lead to
the same conclusion for eq. (3.14). Thus the sign factor functions are all unity
and we have proved the equality of both sides of eq. (3.12). This in turn implies
that eq. (3.10) is true. Therefore Axiom III.4′ as restricted to the set of basis
blades B

∧ is satisfied under the ³ product of σOCp,q .

PROOF FOR AXIOM III.5′′

Axiom III.5′ requires that the square of an r-blade and the product of the
quadratic forms of the vectors in it be equal. So we restrict formula (3.2) for
the sign factor function σ to two identical basis blades ei, ei ∈ B and apply the
set-theoretic identity A ∩ A = A to get

σ(ei, ei) = (−1)
1
2
#(set(ei))[2#(set(ei))#(set(ei))+#(set(ei))+1].

Letting #(set(ei)) = r, we obtain

σ(ei, ei) = (−1)
1
2
r(2r2+r+1).

Since r(2r2 + r + 1) ≡ r(r − 1) mod 4, we have

σ(ei, ej) = (−1)
1
2
r(r−1).

Therefore, ei³ei = (−1)
1
2
r(r−1)ei ◦ei. However, (−1)

1
2
r(r−1)ei is just the usual

formula for ei
† the reversion of ei. Thus, we obtain

ei ³ ei = ei
† ◦ ei

= Q(ej1) · · ·Q(ejk ) · · ·Q(ejr).

Here we have let ei = ej1 ∧ · · · ∧ejk ∧ · · · ∧ejr with all ejk basis vectors. Hence,
Axiom III.5′ as restricted to the set of basis blades B∧ is satisfied under the ³
product of σOCp,q.

42We use the notation Ac for the set complement of A.
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PROOF FOR AXIOM III.6′

Axiom III.6′ requires that within OCp,q, or its arbitrary extension by one di-
mension, for all nonempty subsets A of multivectors there exists a (nonunique)
nonscalar, unit magnitude blade ωA , called the counit of A , which (a) com-
mutes with all multivectors in A and (b) has the generalized commutativity
of right ωA-complementation property for all multivectors in A . In addition,
Axiom III.6′ states that an extension of OCp,q by one dimension always exists.
So in the following proof the symbol B for the basis set will refer to either
the original basis or its extension to B ∪ { en+1 }, if necessary.

43 Of course, the
meaning of B∧ must also be modified to reflect any change made to that of B.

As is sufficient for the proof we restrict A to be ∅ ⊂ A ⊆ B∧. Then we
claim that any basis blade eωA

such that #(set(eωA
)) is odd and

set(eωA
) =

⋃
set(A ) ∪ B for some B ⊆ B (3.15)

satisfies these requirements.
Preliminarily, our alleged counit eωA

must be a nonscalar. Since we have
required that #(set(eωA

)) is odd, it must not be 0. So we cannot have eωA
=

±1.
To show that eωA

has unit magnitude consider that we have defined it to
be a basis blade. We have already shown that for an arbitrary r ≥ 1 the σOCp,q
algebra square of any basis r-blade ei = ej1 ∧ · · · ∧ ejk ∧ · · · ∧ ejr is given by
ei³ei = Q(ej1) · · ·Q(ejk ) · · ·Q(ejr). Since Q(ejk ) = ±1 for all ejk , the product
of all the Q(ejk )’s is ±1. And since eωA

is a nonscalar basis blade, its σOCp,q
algebra square is ±1. Hence its magnitude is 1.

For part (a) let ek be a basis blade such that ek ∈ A ⊆ B∧. Then

ek ³ eωA
= σ(ek, eωA

) ek ◦ eωA
and

eωA
³ ek = σ(eωA

, ek) eωA
◦ ek.

As previously observed σ is patently commutative in its arguments. Therefore
we must show that ek ◦ eωA

= eωA
◦ ek.

By eq. (3.15), ∅ ⊂ set(ek) ⊆ set(eωA
). Therefore,

ek ◦ eωA
= ek · eωA

eωA
◦ ek = eωA

· ek

where the centered dot · denotes the (Hestenes) inner product of the Clifford
algebra C`p,q. Next we apply the rule for commuting the inner product given
by Harke (Ref. [26], eq. (22)) as

Ar · Bs = (−1)s(s−r)Bs ·Ar for r ≥ s.

With Ar = eωA
and Bs = ek we see that

43Here the subscript n + 1 is not intended to imply that Q(en+1) is necessarily negative
and neither is the symbol Q meant to imply that Q = Qp,q+1 rather than Q = Qp+1,q .
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ek ◦ eωA
= eωA

◦ ek,

since r = #(set(eωA
)) is odd by assumption. Therefore, part (a) of Axiom III.6′

is satisfied.
Part (b) of Axiom III.6′ requires that the right ωA -complement is commu-

tative among the two factors and the result of an orientation congruent product
of multivectors:

For all A that are nonempty sets of multivectors, ∅ ⊂ A ⊆ OCp,q, all couints
ωA of A , and all A,B ∈ A

AωA ¸B = A¸BωA = (A¸B)ωA .

Subtituting the basis blades er, er ∈ A, where er ∈ Br and es ∈ Bs, and
et = ωA ∈ B

t in the last equation, and subtituting the σOCp,q algebra product
³ for the orientation congruent algebra product ¸, we obtain

er
et ³ es = er ³ es

et = (er ³ es)
et .

By expanding and lowering the superscript et notation we arrive at

(er ³ et)³ es = er ³ (es ³ et) = (er ³ es)³ et.

Applying eq. (3.1) of Def. 3.1 gives

σ(er , et) σ(er ◦ et, es) (er ◦ et) ◦ es (3.16a)

= σ(es, et) σ(es ◦ et, er) er ◦ (es ◦ et) (3.16b)

= σ(er, es) σ(er ◦ es, et) (er ◦ es) ◦ et. (3.16c)

The double Clifford products on the right side of all three expressions in
eq. (3.16) are equal because the Clifford product is associative and because,
as we have already proved, the couint et commutes with all multivectors in
its “generating” set A. So next we look at the sign factor functions in these
expressions.

Let A = set(er), B = set(es), and C = set(et). Then starting with eq. (3.2)
of Def. 3.1 we evaluate and simplify the sign factor functions of expressions
(3.16a) and (3.16c), each in turn, until we obtain two equivalent expressions.
The manipulation of expression (3.16b) analogously to what we do to (3.16a) is
left to the curious reader.

Evaluating the sign factor functions of expression (3.16a) gives

σ(er, et)σ(er ◦ et, es) = (−1)
1
2
#(A∩C)[2#(A)#(C)+#(A∩C)+1]

· (−1)
1
2
#((A∆ C)∩B)[2#(A∆C)#(B)+#((A∆ C)∩B)+1].

Using set-theoretic identities44 to simplify the above expression gives
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σ(er, et)σ(er ◦ et, es) = (−1)
1
2
#(A)[2#(A)#(C)+#(A)+1]

· (−1)
1
2
#(B∩Ac)[2#(C∩Ac)#(B)+#(B∩Ac)+1].

Recall the identity #(B∩Ac) = #(B)−#(A∩B); also, since A ⊆ C, #(C∩Ac) =
#(C)−#(A). Substituting these in the last expression produces

σ(er, et)σ(er ◦ et, es) = (−1)
1
2
#(A)[2#(A)#(C)+#(A)+1]

· (−1)
1
2
[#(B)−#(A∩B)]·[2{#(C)−#(A)}#(B)+#(B)−#(A∩B)+1].

Since #(C) must always be odd, we may further simplify to

σ(er, et)σ(er ◦ et, es) = (−1)
1
2
#(A)[2#(A)+#(A)+1]

· (−1)
1
2
[#(B)−#(A∩B)]·[2{1−#(A)}#(B)+#(B)−#(A∩B)+1].

Multiplying out the exponents and simplifying them mod 2 gives

σ(er, et)σ(er ◦ et, es) = (−1)[#(A)+#(B)+#(A)#(B)+#(A)#(B)#(A∩B)]

· (−1)
1
2
#(A)[#(A)+1] · (−1)

1
2
#(B)[#(B)+1] · (−1)

1
2
#(A∩B)[#(A∩B)−1]. (3.17)

Now we shift attention to expression (3.16c) whose sign factor functions
evaluate to give

σ(er, es)σ(er ◦ es, et) = (−1)
1
2
#(A∩B)[2#(A)#(B)+#(A∩B)+1]

· (−1)
1
2
#((A∆B)∩C)[2#(A∆B)#(C)+#((A∆B)∩C)+1].

Removing the odd factor #(C), multiplying out and separating certain expo-
nents, replacing #((A∆B) ∩ C) with #(A∆B), and applying mod 2 identities
yields

σ(er, es)σ(er ◦ es, et) = (−1)[#(A∆B)+#(A)#(B)#(A∩B)]

· (−1)
1
2
#(A∩B)[#(A∩B)+1] · (−1)

1
2
#(A∆B)[#(A∆B)+1].

Replacing the symmetric difference operator according to the identity #(A∆B) =
#(A) + #(B)− 2#(A∩ B) leads to

σ(er, es)σ(er ◦ es, et) = (−1)[#(A)+#(B)+#(A)#(B)#(A∩B)]

· (−1)
1
2
#(A∩B)[#(A∩B)+1]

· (−1)
1
2
[#(A)+#(B)−2#(A∩B)]·[#(A)+#(B)−2#(A∩B)+1].

Multiplying out exponential terms and simplifying produces

44We use the notation Ac for the set complement of A.
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σ(er, es)σ(er ◦ es, et) = (−1)[#(A)+#(B)+#(A)#(B)+#(A∩B)+#(A)#(B)#(A∩B)]

· (−1)
1
2
#(A)[#(A)+1] · (−1)

1
2
#(B)[#(B)+1] · (−1)

1
2
#(A∩B)[#(A∩B)+1]. (3.18)

We leave to the reader the easy exercise of completing the proof by showing
that eqs. (3.17) and (3.18) in these last forms are equivalent. Assuming this
done, we have proved that, for the set of basis blades B∧, Axiom III.6′ is
satisfied under the ³ product of the algebra σOCp,q .

This completes the proof of Thm. 3.5 that the Clifford-like sigma orientation
congruent algebra σOCp,q and its product ³ defined by the multilinear extension
of eqs. (3.1) and (3.2) in Def. 3.1 are identical (isomorphic) to the orientation
congruent algebra OCp,q and its product ¸ defined by the primed axioms of
section 2. ¥

Generally, from now on we will drop the word “sigma” to simply refer to the
orientation congruent algebra and orientation congruent product, and substitute
the symbols OC and ¸ for σOC and ³, respectively. However, to indicate that
the orientation congruent product is being computed as the product of the
sign factor function and the Clifford product we will refer to the orientation
congruent product in sigma form.
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4 Computer Software Implemetations of the Ori-

entation Congruent Algebra

Here we give some algorithms for computing the OC product using existing
computer software packages. The practical necessity of computer aided compu-
tation of Clifford algebra operations has been noted by at least one researcher.

“Indeed, I have to admit my own frustration in not being able to do
more than a line or two of computations without making a serious
mistake. I believe that what is most needed in the area today is
an efficient computer software package for carrying out symbolic
calculations in geometric [Clifford] algebra.” —Garret Sobczyk45

By converting the Clifford product to the orientation congruent product, the
sign factor function provides a way to compute the later either automatically or
manually. The algorithms exploiting this fact that we give here are as simple as
possible within the limitations of the software packages used. Except for a few
elementary remarks we will not investigate the efficiency of these methods.

Of the many possible computer software packages available we will discuss al-
gorithms for just two prototypical examples: Mathematica and Clical.46 Math-
ematica is adaptable to do Clifford algebra calculations through programming;
on the other hand, Lounesto’s MS-DOS program Clical is specifically designed
to do them with built-in functions.

Of the four implementations discussed, only one does full-blown, basis-free
symbolic manipulation of Clifford or OC algebra expressions. Although, of
course, all the Mathematica ones could and the Clical one cannot. Nevertheless,
all these implementations are useful within their limitations—even those which
must express multivectors as linear combinations of basis blades.

An algorithm suited to Mathematica, which is a completely programmable,
symbolic computer algebra system (CAS), will be different than one suited to
Clical, which is a numerical software package that can only run scripts without
loops or conditional branches. Also Clical is limited to dimensions n ≤ 10. Con-
sequently, in Mathematica, computation of the orientation congruent product
may be done by straightforward translation of the fundamental decomposition
in Thm. 4.2 below into a program of nested loops. While in Clical, the loops
representing the fundamental decomposition must be rolled out into a sum of
functions whose number and definition varies with the dimension of the base
vector space V n.

First, we derive the fundamental decomposition theorem of the orientation
congruent product in sigma form; using it gives a basic efficiency improvement
over an algorithm based on Thm. 3.3. Next, we present two Mathematica imple-
mentations based on the fundamental decomposition theorem as well as one that
is fully symbolic and basis-optional. Last, we discuss the Clical implementation
of the orientation congruent product as a sum of predefined functions.

45Ref. [41], p. 18.
46This software is available online from the sources in Ref. [30].
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4.1 The Fundamental Decomposition Theorem of the Ori-

entation Congruent Product

First we repeat Thm. 3.3 and Cor. 3.4 for easy reference.47 Then we give
the fundamental decomposition theorem for the Clifford product and derive the
corresponding theorem for the orientation congruent product from it.

Theorem 3.3 For any homogeneous multivectors Ar, Bs ∈ σOCp,q and C`p,q
the multilinear extension of the product ³ of the sigma orientation congruent
algebra σOCp,q given by Def. 3.1 is

Ar ³Bs =

r+s∑

t=|r−s|

〈Ar ³Bs〉t =

r+s∑

t=|r−s|

σt(r, s) 〈Ar ◦Bs〉t, (3.6)

where the sign factor function39 σt : Z[0, n]× Z[0, n] 7→ ±{ 1 }, now a function
of the grades of Ar , Bs and parametrized by the grade t ∈ Z[0, n] of the t-vector
part of Ar ◦Bs, is given by

σt(r, s) = (−1)
1
8
[r+s−t][4rs+r+s−t+2]. (3.7)

Corollary 3.4 For all A,B ∈ σOCp,q

A³B =
∑

r,s

〈A〉r ³ 〈B〉s as evaluted by eq. (3.6). (3.8)

The Fundamental Clifford Product Decomposition Theorem48

Theorem 4.1 For all homogeneous multivectors Ar, Bs ∈ C`p,q their Clifford
product may be written as a sum of homogeneous multivectors

Ar ◦Bs = 〈Ar ◦Bs〉|r−s| + 〈Ar ◦Bs〉|r−s|+2 + · · ·+ 〈Ar ◦Bs〉r+s

=
m∑

k=0

〈Ar ◦Bs〉|r−s|+2k,
(4.1)

where m = 1
2 (Dn(r + s)− |r − s|) with index function

Dn(i) ≡

{
i, if 0 ≤ i ≤ n, and

2n− i, if n ≤ i ≤ 2n.
(4.2)

47In reading this theorem and corollary please recall that after proving the algebra iso-
morphism Theorem 3.5 we have now dropped the word sigma to leave simply orientation

congruent and substituted the symbols OC and ¸ for σOC and ³, respectively.
48A proof of the infinite n version of Thm. 4.1 is sketched by Hestenes and Sobczyk on

p. 10 of Ref. [27]. Harke also mentions it in eq. (48) of Ref. [26]. This finite n form of the
fundamental Clifford product decomposition is from Conradt Ref. [19], eqs. (16) and (17).
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In the next theorem we display the result of inserting the above formula
(3.7) for σt(r, s) as a multiplier of the grade selected Clifford products in the
fundamental decomposition of the Clifford product from eq. (4.1). Thm. 4.2
presents the fundamental decomposition of the orientation congruent product in
terms of the sign factor function σt(r, s) and the Clifford product (or, briefly,
in sigma form).

The Fundamental OC Product Decomposition Theorem

in sigma form

Theorem 4.2 For all homogeneous multivectors Ar , Bs ∈ OCp,q and C`p,q their
orientation congruent product may be written as a sum of homogeneous multi-
vectors

Ar ¸Bs = σ|r−s|(r, s) 〈Ar ◦Bs〉|r−s|

+ σ|r−s|+2(r, s) 〈Ar ◦Bs〉|r−s|+2 + · · ·

+ σr+s(r, s) 〈Ar ◦Bs〉r+s

=

m∑

k=0

σ|r−s|+2k(r, s) 〈Ar ◦Bs〉|r−s|+2k

(4.3)

where the summation limit m and the index function Dn(i) are the same as for
eq. (4.1), and σt(r, s) is given by eq. (3.7) in Thm. 3.3.

Proof. The proof is immediate from Lem. 3.2 and Thm. 4.1 by the multilinearity
of the Clifford product and the linearity of the grade selection operator. ¥

The number of grade selections (and consequent orientation congruent prod-
uct evalutions) is reduced by at least min(r, s) when eq. (4.3) from Thm. 4.2
above is employed instead of eq. (3.6). Using the index function defined in
the theorem, Dn(i), to determine the upper summation limit, m, reduces the
number of products computed even more than the lower bound of min(r, s).

The Mathematica function OCpD given below in Fig. 4.1 achieves this maxi-
mum efficiency. OCpD is defined in terms of functions from the package Clifford
which does not require a dimension n to be declared. Therefore, the parameter
n of Dn(i) is set equal to the highest index of any of basis vectors in Ar or Bs.
Using this value for n has exactly the same effect on the computational efficiency
of a fundamental decomposition based algorithm as would using a value that is
the dimension of any base space V n that allows both Ar and Bs to be nonzero.

However, this is possible only when multivectors are expressed as linear
combinations of basis blades, as is done in the package Clifford. If the dimension
n is not fixed or known, using a basis-free algorithm based on the fundamental
decomposition extracts a penalty of inefficiency. Then we must fall back on
the least efficient basis-free strategy, abandoning the index function and simply
setting m = r + s. Still, in comparison with eq. (3.6), the number of evalutions
of Clifford products is reduced by min(r, s) in absolute terms. In the limit of
infinite min(r, s), the fractional reduction is one half.
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4.2 OC Computations in Mathematica Using Clifford

The author has programmed eq. (4.3) in a Mathematica notebook as the
external function OCpD of Fig. 4.1. She based this function and auxilliary ones
(not given) on the existing package Clifford which she has slightly modified.
This package is internally titled “Clifford Algebra of a Euclidean Space” by its
authors Oscar G. Caballero and José Luis Aragón Vera.49 It computes Clifford
algebra and quaternion operations in terms of the basis blades constructed from
an orthonormal set of basis vectors denoted by e[1], e[2], . . . , e[n].

(* **************************************************** *)

(* Define OCpD ver. 1 *)

(* Orien. Cong. Product in Fund. Decomposition Form *)

(* **************************************************** *)

ClearAll[OCpD]

Remove[OCpD]

OCpD[x_, y_] := Module[{xGradeMin, xGradeMax, yGradeMin, yGradeMax,

xyDimMax, Dind, TempSum, r, s, k},

xGradeMin = GradeMin[x]; xGradeMax = GradeMax[x]; yGradeMin = GradeMin[y];

yGradeMax = GradeMax[y]; xyDimMax = Max[DimMax[x], DimMax[y]];

Dind[i_Integer, n_Integer] :=

Which[

0 <= i && i < n, i,

n <= i && i <= 2 n, 2 n - i

];

TempSum = 0;

r = xGradeMin;

While[r <= xGradeMax,

s = yGradeMin;

While[s <= yGradeMax,

k = Abs[r-s];

While[k <= Dind[r+s, xyDimMax],

TempSum = TempSum + SFac[r, s, k] Grade[Gp[Grade[x, r], Grade[y, s]], k];

k = k + 2

];

s = s + 1

];

r = r + 1

];

TempSum

]

Figure 4.1: External Mathematica Function OCpD. This function gives the
OC product based on the fundamental decomposition theorem, Thm. 4.2.

49This package is available online in two versions from the sources in Refs. [16] and [17].
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The author has also programmed eq. (4.3) as a Mathematica function in-
ternally defined within an altered version of the Caballero and Aragón Vera
package Clifford. This function OCp (Fig. 4.2 below) is a directly modified form
of the the package’s definition of Gp. It computes the OC product by a straight-
forward use of the sign factor function as a multiplier defined by the assignment
sff=(-1)^(gu (2 g1 g2 + gu + 1)/2). Since the loops needed to implement
Thm. 4.2 are already built into the definition of Gp, the OCp function runs much
more quickly than the external function OCpD of Fig. 4.1.

(* Begin OC Product Section *)

OCProduct[ _] := $Failed

OCProduct[m1_,m2_,m3__] := tmp[OCProduct[m1,m2],m3] /.

tmp->OCProduct

OCProduct[m1_,m2_] := ocprod[Expand[m1],Expand[m2]] //

Expand

(* The next 3 assignments define the alias OCp. *)

OCp[ _] := $Failed

OCp[m1_,m2_,m3__] := tmp[OCp[m1,m2],m3] /.

tmp->OCp

OCp[m1_,m2_] := ocprod[Expand[m1],Expand[m2]] //

Expand

ocprod[a_,y_] := a y /; FreeQ[a,e[_?Positive]]

ocprod[x_,a_] := a x /; FreeQ[a,e[_?Positive]]

ocprod[x_,y_] := Module[{

p1=ntuple[x,Max[dimensions[x],dimensions[y]]],q=1,s,r={},r1={},

p2=ntuple[y,Max[dimensions[x],dimensions[y]]],

g1=grados[x],g2=grados[y],gu,sff},

gu=p1.p2;

sff=(-1)^(gu (2 g1 g2 + gu + 1)/2);

s=Sum[p2[[m]]*p1[[n]],{m,Length[p1]-1},{n,m+1,Length[p2]}];

r1=p1+p2;

r=Mod[r1,2];

Do[ If[r[[i]] == 1, q *= e[i]];

If[r1[[i]] == 2, q *= bilinearform[e[i],e[i]]],{i,Length[r1]} ];

(-1)^s*q*sff ]

ocprod[a_ x_,y_] := a ocprod[x,y] /; FreeQ[a,e[_?Positive]]

ocprod[x_,a_ y_] := a ocprod[x,y] /; FreeQ[a,e[_?Positive]]

ocprod[x_,y_Plus] := Distribute[tmp[x,y],Plus] /. tmp->ocprod

ocprod[x_Plus,y_] := Distribute[tmp[x,y],Plus] /. tmp->ocprod

(* End of OC Product Section *)

Figure 4.2: Internal Mathematica Function OCp. This defines the OC prod-
uct as a modified version of the Clifford package’s definition of the function
Gp.
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4.3 OC Computations in Mathematica Using

GrassmannAlgebra

John Browne has developed the Mathematica packageGrassmannAlgebra [9]
to translate the many operations given by Hermann Grassmann in his original
works on the calculus extension into a modern computer system. This powerful
package provides a fully symbolic CAS that allows, but does not require, the
use of a basis and that can accept general metrics.

At the author’s request John Browne has derived the following function for
the orientation congruent product [11]. It is based on the generalized Grassmann
product

λ
∆ of the package.

m
α

λ

¸
k
β =

Min[m,k]∑

λ=0

(−1)mλ(k+1)
(

m
α
λ
∆

k
β
)

(4.4)

In Browne’s package and book [10] the
m
α and

k
β above are called elements (of a

multilinear space). This term refers to a general general multilinear object, but
it implies that the object is not specifically given a geometric interpretation.

Using a general metric, Dr. Browne has also demonstrated the facility of
his package for transforming the entries in the multiplication table of OC3 into
expressions containing the exterior product and the various forms of inner prod-
uct available in GrassmannAlgebra [11]. His presentation of these results in a
Mathematica notebook required 35 pages to print onto letter size paper.

4.4 OC Computations in Clical

The orientation congruent product may also be calculated in Clical, although
much less elegantly than in Mathematica, by rolling out the nested loops of
a program based on its fundamental decomposition. Let Ar, Bs ∈ OCp,q be
blades. Then the fundamental decomposition theorem, Thm. 4.2, states that
the product Ar ¸Bs is not necessarily homogeneous. This theorem is naturally
parametrized by the pair of grades (r, s) of Ar and Bs.

However, the tables below, and the functions derived from them, are instead
naturally parametrized by the dimension n = p+ q of the base vector space of
a given Clifford algebra. This is because in Clical the dimension of the Clifford
algebra C`p,q in which one will calculate is fixed by first declaring its signature
(p, q). Also the sign factor function σ is dependent on three grades: r, s, and t,
where t is the grade of the t-vector part of the product, 〈Ar ¸Bs〉t.

Therefore, for Clical we define a sequence of winnow functions each of which
is a sum of terms of the form σt(r, s) 〈Ar ◦Bs〉t = 〈Ar ¸Bs〉t. The order of
one of these functions is defined to be the lowest dimension that allows all its
terms to be (potentially) nonzero. Then, the sum of these functions up to
order n contains only the grade-selected parts of the product 〈Ar ¸Bs〉t that
are just permitted by the dimension n. Therefore, in general, the summands
σ|r−s|+2k(r, s) 〈Ar ◦Bs〉|r−s|+2k in the fundamental decomposition of Ar¸Bs in
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sigma form for a given r and s appear in several winnow functions of different
orders.

Let the parameter t represent the selected grade of an orientation congruent
(or Clifford) product as in 〈Ar ¸Bs〉t. Then, quite generally,50 we define the
integer k to be one half the reduction of the grade of the product from the sum
of the grades of its factors:

k ≡
1

2
(r + s− t). (4.5)

We may also express this relationship as

r + s = t+ 2k. (4.6)

As a guide to defining the sequence of winnow functions introduced above
we construct tables, one for each integer m ≥ 0, that display the values of t, k,
r + s, and the pairs of grades of factors (r, s), whose products 〈Ar ◦Bs〉t may
first become nonzero when the dimension of the base vector space n is equal to
m. The rows in these tables are ordered from top to bottom by increasing t.
We order the pairs of grades (r, s) in a row from left to right by increasing r. Of
course, we also require that all values in these tables satisfy t, k, r, s ∈ Z[0,m].51

Four examples of these tables are given below as Tabs. 4.1, 4.2, 4.3, and 4.4
for m equal to 2, 3, 4, and 5, respectively. We will ignore the lining out of some
terms; this, as well as the use of bold fonts, will be explained later.

t k r + s (r, s)

0 2 4 (2, 2)

1 1 3 (1, 2) (2, 1)

2 0 2 (0, 2) (1, 1) (2, 0)

Table 4.1: The grades of factors and products that first may be nonzero when
the dimension n = m = 2. The text explains the lined out pairs of factor grades.

50Eq. (4.5) is seen to be the natural generalization of eq. (3.4b) with eq. (3.5) applied to
it, if we let Ar = ei and Bs = ej with ei,ej ∈ B∧, and A = set(ei), B = set(ej ), and
C = set(ei ¸ ej), and k = #(A ∩ B), r = #(A), s = #(B), and t = #(C).

51Here we have used the convenient notation Z[a, b] ≡ { i | i ∈ Z and a ≤ i ≤ b }.
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t k r + s (r, s)

0 3 6 (3, 3)

1 2 5 (2, 3) (3, 2)

2 1 4 (1, 3) (2,2) (3, 1)

3 0 3 (0, 3) (1, 2) (2, 1) (3, 0)

Table 4.2: The grades of factors and products that first may be nonzero when
the dimension n = m = 3. The text explains the lined out pairs of factor grades.

t k r + s (r, s)

0 4 8 (4, 4)

1 3 7 (3, 4) (4, 3)

2 2 6 (2, 4) (3, 3) (4, 2)

3 1 5 (1, 4) (2,3) (3,2) (4, 1)

4 0 4 (0, 4) (1, 3) (2, 2) (3, 1) (4, 0)

Table 4.3: The grades of factors and products that first may be nonzero when
the dimension n = m = 4. The text explains the lined out pairs of factor grades.

t k r + s (r, s)

0 5 10 (5, 5)

1 4 9 (4, 5) (5, 4)

2 3 8 (3, 5) (4, 4) (5, 3)

3 2 7 (2, 5) (3, 4) (4, 3) (5, 2)

4 1 6 (1, 5) (2,4) (3, 3) (4,2) (5, 1)

5 0 5 (0, 5) (1, 4) (2, 3) (3, 2) (4, 1) (5, 0)

Table 4.4: The grades of factors and products that first may be nonzero when
the dimension n = m = 5. The text explains the lined out pairs of factor grades.
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The italicized clause occurring two paragraphs up may be put another way:
for one of these tables m is the minimum value of the dimension n that per-
mits any row to exist; that is, that allows all grade selected products 〈Ar ◦Bs〉t
resulting from homogeneous factors with grades r and s given by all pairs dis-
played in a row to be, in general, nonzero. Then it is easily seen that for each
row in the m-table

m = r + s− k. (4.7a)

Applying eq. (4.6) we obtain

m = t+ k.52 (4.7b)

These two equations may be rearranged to also give

r + s = m+ k and (4.8a)

t = m− k. (4.8b)

Adding the last two equations and rearranging yields

t = 2m− (r + s). (4.9)

We recognize the last equation as t = Dm(r + s) after applying the second
line of the index function Dn(i) definition in eq. (4.2) from the fundamental
decomposition theorem. This leads directly to the observation that each table
is constructed so that m ≤ t ≤ 2m.

This is also why, in general, a given pair of factor grades tracks along a
course of consecutive tables. Specifically, in agreement with the fundamental
decomposition theorem, if the pair (r, s) occurs in position (i, j) in the m-table,
it also appears in position (i+2, j +1) in the (m+1)-table, if m+1 ≤ r+ s ≤
2(m + 1). (Here we have anticipated the matrix interpretation of the next
paragraph.)

The pairs of factor grades in each table may be indexed as (r, s)i,j so that
they constitute a matrix53 of ordered pairs in the last column of that table.
Each row of [(r, s)i,j ] is aligned with the corresponding values of the parameters
t, k, and r + s.

The row and column indices of this matrix satisfy i, j ∈ Z[1,m + 1]. The
row index may be written in terms of the row parameter k by

i = m− k + 1. (4.10)

Nonzero entries of each row of the matrix [(r, s)i,j ] must satisfy min(r, s) ≥ k,
in addition to the already derived 0 ≤ r, s ≤ m and r + s = m + k with

52Equations (4.7a) and (4.7b) are the Clifford algebra analogues of the set-theoretic formulas
#(A ∪ B) = #(A) + #(B) −#(A ∩ B), and #(A ∪ B) = #(A∆B) + #(A ∩ B), respectively.

53Properly, of course, the objects containing these indexed pairs should be called indexed

tables or arrays, since we are not defining matrix addition (let alone multiplication) for them.
Also, we let missing entries in the table become doubly 0-valued entries (0, 0) in the “matrix.”
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r+ s ∈ Z[m, 2m]. All matrix entries, including invalid ones that should be zero,
are given in terms of the row parameter k and the column index j by

(r, s)i,j = (k + j − 1,m− j + 1)i,j . (4.11)

Solving eq. (4.10) for k and substituting in the first half of the pair on the right
hand side of eq. (4.11) gives

(r, s)i,j = (m− i+ j,m− j + 1)i,j . (4.12)

Requiring that the first half of the pair on the right hand side of the last equation
satisfies 0 ≤ r, s ≤ m yields

j ≤ i, (4.13)

which expresses that the matrix [(r, s)i,j ] is naturally lower triangular.
We now begin to define, as an example, a sequence of winnow functions

whose sum is the orientation congruent product in an algebra of base dimension
m = n = p + q = 5. These definitions are valid for all multivector arguments
A,B ∈ OCp,q. We denote this product in the functional form oc(A,B) similar to
the way it would appear in Clical. Clical provides the grade selection operator
which we need. But, we write it in the usual way with angular brackets and a
subscript indicating the grade r to be selected as 〈A〉r rather than as it would
be written in Clical as Pu(r, A).

It is convenient to start by defining two base winnow functions that include
terms that first become nonzero at a variety of dimensions. As such they are of
inhomogeneous order and may be called simply base functions. The first of these
base functions, ocbaseone(A,B), contains terms of lowest order zero; while the
second, ocbasetwo(A,B), contains terms of lowest order three. The functions
of homogeneous order start with ocdimfour(A,B) which as its name suggests
is of order four.

For the definition of ocbaseone(A,B) we need the orientation congruent left
and right contraction operators, and , respectively. These may be defined
by the following equations54 written in terms of some operations and a con-
stant55 that all are available in Clical. Here both I and j represent the algebra
pseudoscalar.

A B = I−1 ◦ [(I ◦B) ∧ A†] (in normal notation)

oclcont(A, B) = j \ ((j *B) ∧ Ã ) (as in Clical)
(4.14)

A B = [B† ∧ (A ◦ I)] ◦ I−1 (in normal notation)

ocrcont(A, B) = (B̃ ∧(A * j))/j (as in Clical)
(4.15)

54These equations (4.14) and (4.15) are derived and proved valid in section 5. See Tab. 5.6,
line (8).

55The constant j in these function definitions is predefined in Clical only for algebras C`p,q

of dimension n = p + q ≥ 3. Clical predefines another constant i for n ≤ 2. The following
Clical script defines a variable jj which is the pseudoscalar in any dimension Clical can handle,
0 ≤ n ≤ 10 (semicolons are used here to indicate the end of a Clical script line): jj = 0;

jj = j; jj = jj + i;
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The first winnow function ocbaseone(A,B) contains the (possibly null)
terms that, for Ar ¸ Bs with homogeneous operands, are of extremum grade
|r − s| or r + s in the fundamental decomposition of the orientation congruent
product. In other words, it contains all orientation congruent inner and outer
product terms found in the orientation congruent product of general multivec-
tors for any dimension n. In particular, the orientation congruent products for
dimensions n ≤ 2 are completely contained in it.

The base winnow function ocbaseone(A,B) is defined by56

ocbaseone(A,B) ≡ +A B +A B −
1

2
〈A B +A B〉0

+ (A− 〈A〉0) ∧ (B − 〈B〉0).
(4.16)

The Clifford product commutator clcom(A,B) is used in the definition the
next winnow function. The definition of the commutator is valid for any dimen-
sion n and is given by

clcom(A,B) ≡
1

2
(A ◦B −B ◦A). (4.17)

The second winnow function ocbasetwo(A,B) includes all terms of the ori-
entation congruent product decomposition that are not contained in the base
winnow function ocbaseone(A,B) and that result from a product of factors at
least one of which is of grade two. Accordingly, it may be nonzero only when
n ≥ 3. The commutator excludes all terms of orientation congruent products
that are also orientation congruent inner or outer products; these are already
included in ocbaseone(A,B). The commutator neatly replaces grade selection
for this purpose.

The base winnow function ocbasetwo(A,B) is defined by

ocbasetwo(A,B) ≡− clcom(A, 〈B〉2)− clcom(〈A〉2, B)

+ clcom(〈A〉1, 〈B〉2) + clcom(〈A〉2, 〈B〉1)

+ clcom(〈A〉2, 〈B〉2), (4.18a)

or, equivalently,

ocbasetwo(A,B) ≡ − clcom(A− 〈A〉1 −
1

2
〈A〉2, 〈B〉2)

− clcom(〈A〉2, B − 〈B〉1 −
1

2
〈B〉2). (4.18b)

We digress to explain the lined out pairs in [(r, s)i,j ]. These are simply
the pairs of factors whose grade-selected product is either an inner product
(in the first column or the main diagonal) or an outer product (in the last
row),57 together with those pairs of factors at least one of which is of grade

56Other expressions may serve as the definition of the function ocbaseone(A,B).
57The (r, s)m,1 and (r, s)m,m entries with a scalar part are pairs of factors whose orientation

congruent product is at the same time both an orientation congruent inner and outer product.
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two. In other words, these are all pairs of factors whose terms are included in
the base winnow functions ocbaseone(A,B) or ocbasetwo(A,B). In addition
to lining out, a bold font is used for the pairs of factors whose products are in
ocbasetwo(A,B). The terms resulting from these lined out factor pairs must
be excluded from the higher order functions we define next.

The statements above about which matrix entries are lined out may also be
expressed algeraically in terms of r and s in the following complementary form.
The factor pairs in [(r, s)i,j ] that are not lined out must satisfy the additional
conditions

r, s > 2, (4.19a)

r, s < m, and (4.19b)

r + s > m. (4.19c)

The winnow function of order 4 ocdimfour(A,B) holds all terms of the
orientation congruent product decomposition that are not contained in the base
winnow functions and that first may be nonzero when n = 4. It is defined by

ocdimfour(A,B) ≡ − 〈〈A〉3 ◦ 〈B〉3〉2. (4.20)

As an example calculation we find the sign in eq. (4.20) by evaluating the
sign factor function in eq. (3.7), repeated here,

σt(r, s) = (−1)
1
8
[r+s−t][4rs+r+s−t+2] (3.7′)

with the values in eq. (4.20) above. This gives

= (−1)
1
8
[3+3−2][4·3·3+3+3−2+2]

= (−1)
1
8
[4][42] = (−1)21 = −1.

The winnow function of order 5 ocdimfive(A,B) comprises all terms of the
orientation congruent product decomposition that are not contained in the base
or lower order winnow functions and that first may be nonzero when n = 5. It
is defined by

ocdimfive(A,B) ≡ + 〈〈A〉3 ◦ 〈B〉3〉4

− 〈〈A〉4 ◦ 〈B〉3〉3 − 〈〈A〉3 ◦ 〈B〉4〉3

+ 〈〈A〉4 ◦ 〈B〉4〉2.

(4.21)

Finally, summing all the above winnow functions (the base functions and the
winnow functions of order m ≤ 5) gives oc(A,B) which contains all terms of
the orientation congruent product decomposition that could be nonzero when
n = 5 (as well as some that could be nonzero when n > 5).

oc(A,B) ≡ ocbaseone(A,B) + ocbasetwo(A,B)

+ ocdimfour(A,B) + ocdimfive(A,B).
(4.22)
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We end this section by deriving a formula for Tm the number of terms in a
winnow function of order m ≥ 4. First, consider the number of terms, lined out
or not, in a table of order m. Since there are m + 1 rows in an m-order table
and since it has a triangular shape this is just the sum of the first m+1 positive
integers

Sm+1 =
1

2
(m+ 1)(m).

If we remove a count of the pairs that give rise to the outer product, those
in the last row of the table, and a count of the pairs that give rise to the inner
product, those in the first column and on the main diagonal, we get the following
formula for the sum of the first m− 1 positive integers

Sm−1 =
1

2
(m− 1)(m− 2).

Finally, we remove a count of the pairs with r = 2 or s = 2. Pairs with
at least one 2 in either position always occur in the last three rows of a table
of order m ≥ 4. The pairs in the highest and lowest of these three rows are
already excluded because the are in ocbaseone(A,B). In a table of orderm ≥ 4
the middle row always contains exactly two such pairs, neither of which are in
ocbaseone(A,B). Thus, we must remove a count of two from Sm−1. Therefore,
the formula for Tm, the number of terms in a winnow function of order m ≥ 4,
is given by

Tm =
1

2
(m− 1)(m− 2)− 2. (4.23)
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5 The Clifford and Orientation Congruent Con-

traction Operators

5.1 The Significance of the Contraction Operators

The contraction operators of Clifford algebra are of theoretical and practical
significance. They are used theoretically, for example, by Fernández et al. ([25],
p. 15) in an axiomatic exposition of the Clifford algebra C`n. Their approach
exploits the Cartan decomposition formula for the Clifford product of a vector
and multivector to deform the exterior algebra:

x ◦ u = x ∧ u+ x u for all x ∈ V and all u ∈
∧

V . (5.1)

Here the lower-left hooked bar stands for the left Clifford contraction operator.

In the work of Fernández et al. as well as this paper the Cartan decompo-
sition formula is explicitly or implicitly the basis for a calculational method for
the algebra considered.58 We say “calculational method” because this approach
does not give a genuine axiomatization of OCp,q. Since under a basis change it is
does not respect the grading of the elements of the exterior algebra, this method
falls short of an axiomatic definition ([20], p. 45). Therefore, our GR axioms for
the Clifford and orientation congruent algebras of a nondegenerate quadratic
form, strictly speaking, define only a calculational scheme for or representation
of these algebras’ products in terms of the exterior product and the algebras’
contraction operators.

However, this type of axiomatic approach is related to the more fundamental
one of Chevalley who embeds the Clifford algebra as a subalgebra of the associ-
ated exterior algebra’s endomorphism algebra through the Chevalley-operator
representation (which Chevalley [18] based on the Cartan decomposition for-
mula). In either approach the contraction operators are crucial.

Lounesto ([33], pp. 288–90) discusses the contraction operators while con-
structing the linear isomorphism

∧
V → C`(Q). On the practical side Lounsesto

([32], pp. 143f) points out the awkwardness of substituting the more symmetri-
cal dot product of Hestenes et al ([27], p. 6) in constructing proofs. Also Dorst
in Refs. [21], p. 10, and [22], p. 47, reiterates Lounesto’s complaints as well as
discusses the difficulties removed by using the contraction operators rather than
the Hestenes dot product in designing computer algebra systems for Clifford al-
gebra. For more motivational material see the references cited above as well as
Lounesto [31].

Because of the importance of the contraction operators, we present them
for both the Clifford and orientation congruent algebras. We give a parallel
exposition so that comparison between the two tracks may aid the reader’s
understanding.

58Of course, for the OC algebra of this paper we would need to subtitute the left orientation
congruent contraction operator for the Clifford one in eq. (5.1).
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5.2 Fundamental Definitions of the Contraction Opera-

tors

Here we will give two definitions, based on Lounesto ([33], pp. 288–90), of
the four contractions { left, right } × { C`,OC }. See also Dorst ([21], p. 8) for
another exposition of the first derivation, and Fauser ([24], pp. 23f) for another
version of both. Let Tab. 5.1 define notations for the four contraction operators.

Left Right

C`

OC

Table 5.1: Notations for the Four Contraction Operators.

We assume that we have already made the extension from V n × V n to∧
V n ×

∧
V n of the bilinear form59 associated with a general (not necessarily

nondegenrate) quadratic form Q, perhaps, by means such as the references cited
above employ. A pair of angular brackets 〈·, ·〉 will denote both the original,
nonextended bilinear form and its extension.

A general contraction operator may be fundamentally defined as the dual
or adjoint of a modified exterior multiplication with respect to some pair-
ing,60 Depending on the modifications made to exterior product this defini-
tion produces a different contraction operator. The modifications required to
produce a Clifford or orientation congruent, left or right, contraction operator
involve only the reversion of some of the terms. The pairing required is the
multilinear extension of the bilinear form associated with the quadratic form of
the Clifford or orientation congruent algebra.

The equations in Tab. 5.2 give duality definitions of the four contraction
operators using an extended bilinear form based on a nondegenerate Q on V n.61

Left Right

C` 〈u v, w〉 ≡ 〈v, u† ∧ w〉 〈u v, w〉 ≡ 〈u,w ∧ v†〉

OC 〈u v, w〉 ≡ 〈v, w ∧ u〉 〈u v, w〉 ≡ 〈u, v ∧ w〉

Table 5.2: Duality Definitions of the Four Contraction Operators. These
definitions are valid for all u, v, w ∈

∧
V n, and for all extended bilinear forms

〈·, ·〉 derived from a nondegenerate quadratic form.

59This concept was introduced earlier by Def. 2.1 under the notation BQ(·, ·).
60A pairing, or bilinear form over R, is defined as a bilinear map B:U×V → R where U and

V are vector spaces over R ([42], p. 58). See fn. 3 for a definition of bilinearity. An example
of such a pairing is the scalar product of multivectors in a Clifford algebra.

61We remind the reader that, as mentioned in the paper’s Introduction, the notations for the
reversion and grade involution of a multivector A that we use are, respectively, the superscript
dagger as A†, and the right hooked overline, as A, or the superscript symbol derived from it,
the upper right “corner,” as Aq.
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A set of three equations may be derived from the duality definition of each
contraction operator; or, conversely, a set of these three equations may be used
define the contraction operator that corresponds to it. These sets of three equa-
tions may be used to reduce an expression involving the contraction operators
to another containing multivectors of lower grade than those in the original ex-
pression. Interestingly, these reduction definitions are more general than the
duality ones; they allow the use of an extended bilinear form that is derived
from a general, possibly degenerate quadratic form.

The first equation in the set of three is the same for all four operators as
is shown in Tab. 5.3. The other two equations in the set vary by the operator
according to Tabs. 5.4 and 5.5.

Left Right

C` x y ≡ 〈x,y〉 x y ≡ 〈x,y〉

OC x y ≡ 〈x,y〉 x y ≡ 〈x,y〉

Table 5.3: Reduction Definitions of the Four Contraction Operators:
Part 1. These definitions are valid for all x,y ∈ V n, and for all extended
bilinear forms 〈·, ·〉 derived from a general, possibly degenerate quadratic form.

Left Right

C` x (u ∧ v) ≡ (x u) ∧ v + u ∧ (x v) (u ∧ v) x ≡ u ∧ (v x) + (u x) ∧ v

OC x (u ∧ v) ≡ u ∧ (x v) + (x u) ∧ v (u ∧ v) x ≡ (u x) ∧ v + u ∧ (v x)

Table 5.4: Reduction Definitions of the Four Contraction Operators:
Part 2. These definitions are valid for all x ∈ V n, for all u, v ∈

∧
V n, and

for all extended bilinear forms 〈·, ·〉 derived from a general, possibly degenerate
quadratic form.

Left Right

C` (u ∧ v) w ≡ u (v w) w (u ∧ v) ≡ (w u) v

OC (u ∧ v) w ≡ u (v w) w (u ∧ v) ≡ (w u) v

Table 5.5: Reduction Definitions of the Four Contraction Operators:
Part 3. These definitions are valid for all u, v, w ∈

∧
V n, and for all extended

bilinear forms 〈·, ·〉 derived from a general, possibly degenerate quadratic form.

5.3 Derived Expressions for the Contraction Operators

Lounesto ([33], pp. 38f) defines the Hodge dual (or star) operator, written
as a star ∗, for C`3. This definition is immediately generalizable to to C`p,q
because it can be straightforwardly seen to be equivalent to the fourth equation
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on p. 166 of Burke [13] (but with multivectors substituted for differential forms).
Therefore, we give the following general definition of the Hodge dual operator.
For all u, v ∈ C`p,q and for all extended bilinear forms 〈·, ·〉 derived from a
general, possibly degenerate quadratic form

u ∧ ∗ v = v ∧ ∗ u = 〈u, v〉I. (5.2)

Employing this definition and some other results to be added to a later version of
this paper we may derive the equivalent expressions for the contraction operators
given in Tab. 5.6.

Left Right

u v u v

= (v† u†)† = (u v†)† = v u† = (v† u†)† = (u† v)† = v† u (1)

= [u ∧ (v ◦ I)] ◦ I−1 = I−1 ◦ [(I ◦ u) ∧ v] (2)
C`

= {I−1 ◦ [(I ◦ v†) ∧ u†]}† = {[v† ∧ (u† ◦ I)] ◦ I−1}† (3)

= {∗−1[u ∧ ∗(v†)]}† = {∗[∗−1(u†) ∧ v]}† (4)

= ∗[(∗−1v) ∧ u†] = ∗−1[v† ∧ (∗u)] (5)

u v u v

= (v† u†)† = (u v†)† = v u† = (v† u†)† = (u† v)† = v† u (6)

= {[u ∧ (v† ◦ I)] ◦ I−1}† = {I−1 ◦ [(I ◦ u†) ∧ v]}† (7)
OC

= I−1 ◦ [(I ◦ v) ∧ u†] = [v† ∧ (u ◦ I)] ◦ I−1 (8)

= ∗−1[u ∧ (∗ v)] = ∗[(∗−1u) ∧ v] (9)

= {∗[∗−1(v†) ∧ u†]}† = {∗−1[v† ∧ ∗(u†)]}† (10)

Table 5.6: Derived Expressions for the Four Contraction Operators.
These expressions are valid for all u, v ∈

∧
V n. The star ∗ represents the Hodge

dual operator (see the text for details).

TO BE DEVELOPED FURTHER
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6 Some Algebras, Graphs, and Theory

This section introduces the product sequence graph (PSG) using the nonas-
sociative algebra U with four basis elements as a simple example. Next we rep-
resent the complete multiplication table of OC3 by its product sequence graph.
Then we unfold this graph into its infinite three-dimensional version: the product
sequence lattice (PSL) of OC3.

Next we simplify the PSG of some algebras with eight basis elements by
letting the presence of some edges and arcs be implied and not providing a
vertex for the unit. We also modify the rules for translating a path traced on
the graph into a product equation. This gives us the reduced product sequence
graph (RPSG) which is essentially a diagram of the Fano projective plane.

Using the RPSG and Albuquerque and Majid’s work on maximally graded,
nonassociative algebras defined on Z2×Z2×· · ·Z2 we compare four Clifford-like
algebras. These are the Clifford algebra C`0,3, the orientation congruent alge-
bra OC3, the Cayley or octonion algebra O, and the modified octonion algebra
Om. We also investigate the four antialgebra counterparts to the above algebras
which are, respectively, C`3, OC0,3, the antioctonion algebra O, and the modified
antioctonion algebra Om.

6.1 The Product Sequence Graph of a Small Algebra

The product sequence graph of an algebra, if it exists, encodes the algeba’s
multiplication table. The PSG is a mixed graph with labeled62 edges and arcs.
It employs the Hamiltonian triangle63 construction.

The product sequence graph and its derivatives are called mixed graphs
because they may contain both directed edges and undirected or bidirected
arcs. The term “arc” will always be used to refer to an undirected or bidirected
edge. For our purposes it is not necessary to distinguish between an undirected
arc and a bidirected arc. We will freely represent either type as an arc having
no arrowheads, or as an arc having an arrowhead at each end that points away
from the arc.

As an introductory example consider the nonassociative algebra U with ba-
sis elements 1, a, b, and c. These basis elements all have unit squares; the
remaining products are shown in Tab. 6.1.

We derive the graph in Fig. 6.1 from the multiplication table of U by labeling
its vertices with the basis elements of U . The central purple vertex represents
the unit 1. The other three vertices correspond to their labels a, b, and c. We
claim it encodes the multiplication table of U .

62Actually, as far as is practical and useful, we represent the labels of the edges and arcs by
physically coloring them in our diagrams. But we do not use the adjective “edge-colored” to
describe these graphs because it has long been widely adopted for a different concept.

63Porteous ([37], p. 183) has used this term in discussing the octonions. The Hamiltonian
triangle is the graphical version of the familiar cyclic permutation rule for the vector cross
product of the unit vectors i, j, and k.
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b

ab 1 a b c

1 1 a b c

a a 1 c −b
a

b b −c 1 a

c c b −a 1

Table 6.1: The Multiplication Table for the Algebra U .

Examining the yellow triangle formed by the three directed edges connecting
a, b, and c, we see that any sequence of vertex labels, v1, v2, v3, written in the
order encountered when tracing around the triangle in the direction of the arrows
satisfies the equation v1v2 = v3. For example, bc = a. If we trace a sequence
of two yellow edges in the direction contrary to their arrows we generate a
sequence of vertex labels v1, v2, v3 corresponding to the equation v1v2 = −v3.
For example, cb = −a.

Consider the light gray loop incident with the 1 vertex. Starting at the 1
vertex and tracing around it twice in either direction produces the sequence of
vertex labels 1, 1, 1 corresponding to the equation 1(1) = 1.

PSfrag replacements

1

a b

c

Figure 6.1: The Product Sequence Graph of U .
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Next examine the green “tennis racket” consisting of the undirected loop and
the arc incident on the vertex labeled a. Again tracing twice along these green
arcs in any direction generates a sequence of three vertex labels v1, v2, v3. Any
one of these sequences satisfies the equation v1v2 = v3 if whenever you arrive
at the a vertex having just traversed the loop you continue on the nonloop arc
and vice versa. Tracing on the green arcs in this way generates the following
equations all valid in U : 1a = a, a1 = a, and aa = 1.

Tracing on each of the three tennis rackets following these rules gives 9 = 3×3
equations; tracing on the light gray loop incident on the 1 vertex gives one
equation; and, finally, tracing on the yellow triangle in all possible ways gives
6 = 2× 3 equations. Our tracings have produced all 16 = 9 + 1 + 6 equations
corresponding to the 16 product entries in the multiplication table of U . A graph
for which this is possible is called the product sequence graph of an algebra.

Following these rules we may also chain together two or more tracings, each
of length two, if the vertex at which the first one ends is also the vertex which
begins the second and so on. Then, to form an equation from the sequence, every
third vertex label in a three vertex sequence (except the final one) is replaced
with the preceding two vertex labels enclosed in parenthesis. To complete the
equation an equal sign is added just before the last vertex label. As before
consecutive pairs of edges joining three vertices in a sequence must have the
same color. For example, we may obtain the sequence 1, a, a,b, c which yields
the equation (1a)b = c.

“Branching sequences” (corresponding to trees) may also be generated. Let
us indicate each three element sequence in a side branch (as well as those
in straight chains) by enclosing it within square brackets. For example, on
the product sequence graph of U we might trace out the branching sequence
[1, a, a], [c, a,b], c which yields the equation (1a)(ca) = c. A more complicated
example: the branching sequence [1, [b, c, a], a], [c, a,b], c translates into the
equation (1(bc))(ca) = c.

The astute reader may have realized that U is isomorphic to any of four
subalgebras of OC3. For example, applying the correspondences 1↔ 1, a↔ e1,
b↔ e2, c↔ e12 yields the imperfect orientation congruent algebra IOC2.

6.2 The Product Sequence Graph of OC3

Fig. 6.2 presents the product sequence graph of OC3. Here we have used as
vertex labels the sequences of indices normally appearing in multi-index notation
as subscripts to the base symbol “e.” However, for the unit 1 we have substituted
“∅” as the empty sequence. (The notation in Fig. 6.2 was changed only for the
convenience of the author in constructing the diagram.)

Also in Fig. 6.2 to avoid drawing a messy diagram with close or crossing edges
we have split the unit element’s vertex into seven purple ones each labeled “∅.”
We agree to interpret these seven as one “super vertex” so that having arrived
at any one of them we may jump to any of the other six and continue on from
it (assuming in doing so we are adhering to all other rules).
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We have run out of easily distinguishable colors for the edges. However,
in the sense of an abstract edge-labeled graph, the reader should consider the
following sets of arcs to have dinstinct colors: each of the seven black tennis
rackets; and each of the three sets of three closely-spaced orange arcs drawn in
the shape of a circlar arc and incident on the central vertex labeled “123” or
two diametrically opposite vertices.

Six vertices in Fig. 6.2 lie on a thin circular line. It represents no edge; but
it does suggest a great circle of a sphere. The three sets of three closely-spaced
orange arcs may appear to lie on other great circles. The reader may imagine
the three-dimensional placement of the other elements of the graph.

1

Ø

123 Ø

12

Ø

23

Ø

3

Ø

31
Ø

2
Ø

Figure 6.2: The Product Sequence Graph of OC3.
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6.3 The Product Sequence Lattice of OC3

The product sequence graph of OC3 may be unfolded into an infinite three-
dimensional lattice-like graph. Fig. 6.3 is a finite section of one plane in such a
graph. As in Fig. 6.2 we have used the multi-index subscript sequences, but here,
rather than labeling the vertices, these integer sequences directly represent them.
Also in this figure an arc is indicated by a line segment having an arrowhead at
each of its ends that points away from the segment.

The coloring scheme for the edges and arcs in this figure is different from
that used in Fig. 6.2. Here moving along any two solid black edges in a straight

12

1 1

2 123 31 123 2

12 123 3 3 123 12

1 1 123 23 123 1 1

2 123 31 123 2 2 123 31 123 2

3 3 123 12 123 3 3

23 123 1 1 123 23

2 123 31 123 2

3 3

23

Figure 6.3: The Product Sequence Lattice of OC3. This is actually a finite section that
tiles a plane. The text gives the spatial “tiling.” These edge colors differ from those of Fig. 6.2.
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path is considered remaining on edges of the same color. One may also move
similarly along the thinner red, green, or blue dashed arcs in straight paths,
but only if a “123” labeled vertex is incident between two adjacent arcs. After
starting a two arc sequence from a vertex labeled “123” and reaching another
vertex along a dashed red, green, or blue arc, one must continue on a dashed arc
that is the same color and that makes the smallest angle with the just traversed
arc.

This finite section (not of minimal size) will tile the plane to infinity. All of
space may be “tiled” by infinitely repeating a three-dimensional unit comprising
two alingned, stacked copies of this plane in turn stacked upon a third aligned
plane of purple super vertices distributed in the same pattern as the vertices in
the other two planes. These purple vertices represent the unit and so should
be labeled “∅.” All nearby vertices in the third plane must be connected by
straight, light gray arcs. The vertices immediately above or below each other
along the stacking direction must be connected by appropriately colored arcs.

6.4 Eight Algebras in Graphs and Theory

In this subsection we provide the multiplication tables and reduced product
sequence graphs of some Clifford, orientation congruent, and generalized Cayley
algebras. Using their reduced product sequence graphs we directly compare four
of these Clifford-like algebras. These are the Clifford algebra C`0,3, the orienta-
tion congruent algebra OC3, the Cayley or octonion algebra O, and the modified
octonion algebra Om. We also investigate the four antialgebra counterparts to
the above algebras which are, respectively, C`3, OC0,3, the antioctonion algebra
O, and the modified antioctonion algebra Om.

However, these counterpart algebras can only be represented by reduced
PSGs after they are rectified by multiplying their odd-grade basis blades by the
imaginary unit i. The rectified forms of these algebras are isomorphic to their
opposite algebras which in turn are isomorphic to the four original algebras.

Here we will also discuss those aspects of the work of Albuquerque and Majid
(Refs. [3], [4], [5], and [6]) on the theory of maximally graded, nonassociative
algebras defined on Z2 × Z2 × · · ·Z2 and compare expressions for the Clifford,
orientation congruent, and octonion algebra in their maximally graded forms.

TO BE DEVELOPED FURTHER
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Figure 6.5: The Reduced Product Sequence Graphs for the Rectified Forms of the Antialgebras of the Four Above.
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7 Multiplication Tables: Symmetries, Matrices,

and Functions

In this section we continue the comparison of the Clifford and the orienta-
tion congruent algebra multiplication tables that we began in subsection 2.5.
We define several canonical forms for these tables and examine their resulting
symmetries. The canonical forms for the Clifford multiplication tables, based
on the Gray code order of the elements in the indicial row and column, have
already been reported by other investigators. Those for the orientation congru-
ent tables appear to be new. Defining the OC multiplication table canonical
forms requires rather involved and interesting combinatorial expressions. The
OC table sign distributions create some striking patterns (see Fig. 7.1).

As is already known the sign patterns in the Clifford algebra multiplica-
tion tables generate various forms of Hadamard matrices and these matrices
may be interpreted as particular ordered sequences of Walsh functions. But the
sign patterns in the orientation congruent algebra tables generate some differ-
ent kinds of matrices that may also be interpreted as sequences of orthogonal
functions. This connection seems to be currently unknown.

TO BE DEVELOPED FURTHER



60 7. Multiplication Tables: Symmetries, Matrices, Functions

Figure 7.1: Some Pretty Multiplication Table Sign Patters for OC5.
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8 Specific Associativity and Associomediativity

8.1 The Null Associator Predictor

The associator of any three elements of an algebra [u, v, w] = (uv)w−u(vw)
is null exactly when u, v, w is a specifically associative triple. The γ in the next
theorem is the grade of operator. The symbol ∩ represents the meet operator.

Theorem 8.1 In a OC algebra a triple of blades A, B, C has null a associator
if and only if the following null associator predictor is even:

[γ(A ∩ C) + γ(A) γ(C)][γ(A ∩ B) + γ(B ∩ C)]

+ γ(A ∩ C) γ(B)[γ(A) + γ(C)]. (8.1)

Proof. A lot of tedious algebraic manipulation of sign factor functions that is
left to the reader or the reader’s symbolic computer algebra system. ¥

Note the symmetry in this expression. The A and C at the extreme positions
of the associator always appear in balanced pairs that commute.

8.2 The Associomediative Property of Counits

The counits in an orientation congruent algebra appear to have (under cer-
tain conditions given below) what we will call the associomediative property : If
a sequence of couints are interleaved into an expression of products of blades
that expression becomes freely associative—parentheses may be added in any
well-formed way without changing the value of the expression.

This is a very interesting statement. But at the moment it remains a con-
jecture having been verified only empirically using Mathematica for OCn with
n ≤ 11. In these computational tests the Euclidean orientation congruent al-
gebra for each order n was challenged with all combinations of grades of two
blades and with all possible grades of products between them. The author has
not attempted a proof. She can give no estimate of its difficulty (assuming the
conjecture is correct).

THE ASSOCIOMEDIATIVE CONJECTURE

Let A,B ∈ OCp,q be blades and let ωA be a counit of A where A =
{A,B } ∪ C for any C ⊆ OCp,q. Let any unparenthesized expression which is a
substring of finite length r ≥ 1, beginning with “A” but not ending with “¸”,
taken from any string formed by concatenating a finite number of copies of the
string “A ¸ ωA ¸ B ¸ ωA¸” be called an “associomediative expression in A,
B, and ωA of order s” where s = 1

2 (r + 1) is the number of factors in the OC
multiproduct that is the expression.

Also let γ be the grade of function just defined in the subsection above.
Then for all OCp,q and all blades A,B ∈ OCp,q and all counits ωA ∈ OCp,q
satisfying the definition of an associomediative expression, all parenthesizations
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into binary products of the associomediative expression in the same A, B, and
ωA of the same order s are equal if and only if either s ≤ 8 or

γ(A) γ(B) +
1

2
[γ(A) + γ(B)− γ(A¸B)] (8.2)

is even.

TO BE DEVELOPED FURTHER
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9 Matrix Representations of the Orientation Con-

gruent Algebra

In subsection 6.1 we gave the multiplication table (Tab. 6.1) of a small
nonassociative algebra U with basis elements 1, a, b, and c. This algebra U
is isomorphic to the (imperfect) orientation congruent algebra OC2 with the
correspondences 1↔ 1, a↔ e1, b↔ e2, c↔ e12.

A kind of matrix representation of OC2 may also be established. We claim
the matrices

I =


1 0

0 1


 , A =


 0 −i

−i 0


 , B =


 0 1

−1 0


 , C =


−i 0

0 i


 (9.1)

are representations of the basis blades of OC2 under the correspondences I↔ 1,
A↔ e1, B↔ e2, C↔ e12.

But under what product? Let the set of square matrices and their matrix
algebras over R, C, and Hamilton’s quaternions H, be written as Mat(R, n),
Mat(C, n), and Mat(H, n), respectively. As is well known, it is among these
algebras that the standard faithful matrix representations of the Clifford alge-
bras C`p,q are found. All elements of these matrix algebras do associate because
their multiplication is the usual matrix product, but the elements of OC2 do not
associate under the orientation congruent product. Therefore the usual matrix
algebras and their product cannot represent the orientation congruent product
of OC2.

Instead we define the (left) Hermitian conjugate product, denoted by a circled
star ³, so that for all conforming matrices P and Q

P³Q ≡ PHQ ≡ PtQ. (9.2)

Here juxtaposition indicates the standard associative matrix product, the over-
bar indicates matrix complex conjugation, the superscript lower case t indicates
matrix transposition, and the superscript upper case H indicates Hermitian con-
jugation. The reader may verify that under this nonassociative matrix product
the algebra of the matrices I, A, B, and C taken from Mat(C, 2) is isomorphic
to OC2.

The author has found nonassociative matrix algebra representations for OC3
and some other orientation congruent algebras by ad hoc methods. It appears
that if the faithful matrix representation of the Clifford algebra C`p,q requires
matrices taken from Mat(R, n), Mat(C, n), or Mat(H, n), the smallest nonasso-
ciative matrix representation of OCp,q requires matrices taken from Mat(R, 2n),
Mat(C, 2n), or Mat(H, 2n), respectively.

TO BE DEVELOPED FURTHER
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http://users.tkk.fi/~ppuska/mirror/Lounesto/CLICAL.htm
http://www.hut.fi/~ppuska/elmag_alg.html
http://www.perwass.de/published/thesis.ps.gz
http://www.ks.informatik.uni-kiel.de/~vision/doc/Publications/chp/TutDAGM03_TR_v11.pdf
http://www.ks.informatik.uni-kiel.de/~vision/doc/Publications/chp/TutDAGM03_TR_v11.pdf


The Orientation Congruent Algebra. Part I D. G. Demers 69

[42] Frank W. Warner. Foundations of Differentiable Manifolds and Lie Groups.
Springer-Verlag, New York, 2nd ed., 1983. Corrected reprint of 1st ed.,
1971.


	Title Page
	Dedication
	Contents
	Introduction
	An Axiom System for the OC Algebra
	The Nondegenerate Quadratic Form Q(p,q)
	GR Axioms for the Clifford Algebra Cl(p,q)
	GR Axioms for the Orientation Congruent Algebra OC(p,q)
	Other Axiom Systems
	Multiplication Tables

	The Clifford-Likeness of the OC Algebra
	SigmaOC Product Definition by the Sign Factor Function
	SigmaOC Algebra Satisfaction of the GR Axioms

	Computer Software Implemetations of the OC Algebra
	The Fundamental Decomposition Theorem
	OC Computations in Mathematica Using Clifford
	OC Computations in Mathematica Using GrassmannAlgebra
	OC Computations in Clical

	The Clifford and OC Contraction Operators
	The Significance of the Contraction Operators
	Fundamental Definitions of the Contractions
	Derived Expressions for the Contractions

	Some Algebras, Graphs, and Theory
	The Product Sequence Graph of a Small Algebra
	The Product Sequence Graph of OC(3)
	The Product Sequence Lattice of OC(3)
	Eight Algebras in Graphs and Theory

	Multiplication Tables: Symmetries, Matrices, Functions
	Specific Associativity and Associomediativity
	The Null Associator Predictor
	The Associomediative Property

	Matrix Representations of the OC Algebra
	References

