RAAG MEMOIRS
Yol. 3, 1862

DivisioN F

CoNTRIBUTIONS TO DIAKOPTICS

GENERAL INTRODUCTION——-Continued

DIAKOPTICS, as it was initially proposed by
Gabriel Kron, was a remarkable methodology
offering efficient labour-saving tools for the
practical analysis of engineering system struc-
tures. Now that the initial skepticism is being
replaced by enthusiasm, it is sometimes for-
gotten that the initiation has more significance
than is conventionally accorded to it by the
vernacular trend in the network engineer’s
circles. To us it is a thought rather than a
method, as is cybernetics. That we have come
to entertain our own views of the diakoptical
science may partly have originated from our
seclusion on this side of the Pacific from the
recognized sphere where diakoptics is discussed.
Already in RAAG Memoirs, Volume II, our
investigations appeared to develop along lines
not wholely the same as elsewhere. After so
engaging ourselves for several years in the
exploration of the tearing-reconnecting methods
we would regard the different manners of
approach in this specific field as disclosing how
the transpacific mentality and ours are re-
sponsible for different objectives.

It was not until the recognition of general
diakoptics came into being that we were able
to overcome our initial hesitation in plunging
into an investigation of the new field. The
generalization included non-linear systems and
continua under infinitesimal tearing—whereas
Kron’s original exposition referred mainly to
linear and finite discrete systems compared to
networks and network approximations of con-
tinua under finite tearing—the standpoint which
we would call special diakoptics.

Both special and general diakoptics are con-
cerned about problems of topological non-
invariance forming their principal features.

In the following also we start with the
topological foundations of the diakoptics and
codiakoptics of linear networks in F-VI, in
which the homological method of dissection is

a main mathematical apparatus.

The utility of the methods of special dia-
koptics, however, cannot be fully analyzed
without the information-theoretical considera-
tion such as we have pointed out to be
fundamental in F-IV in the previous volume.
The analysis along such lines will further be
pursued in the present volume in F-VII by
means of the .dissection of linear networks,
for both special diakoptics and codiakoptics,
which latter was also pointed out to exist in
F-II in the second volume.

It was also one of the motives of establishing
a new division—Division F—in the second
Memoirs volume on diakoptics that we could
not help being concerned about the information-
theoretical foundation of the diakoptical effi-
ciency.

One of the merits of F-II was that it explicitly
referred to the multiplex diakoptics consisting
in applying diakoptics and codiakoptics repeat-
edly. A numerical example thereof in double
diakoptics is now given in F-VIII, clarifying
the method and attesting to its efficiency.

Many other applications of special diakoptical
methods and thoughts to specific problems
studied after publication of the second Memoirs
are also included in the next division—Division
G—as well as in Division A. In the latter, Kron
describes examples of tearing elastic structures
in continuation of his F-III described in Volume
II. An exposition of his new thought on the
possibility of power-system type automata is
described in G-IV. Applications to the problems
of transportation networks frequently appear-
ing in linear programming are found in Masao
Iri’s papers G-VI and G-VII.

We may say that the diakoptical approaches
have been apparent from the beginning in the
RAAG research activities. It was foreshadowed
in Volume I. Its philosophical features were
explicitly anticipated in Volume II accompanied
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320 Division F-

by some realistic approaches to the practical
problems mostly within the special diakoptical
realm in the past two volumes. However,
applications to specific general diakoptical
problems also have not been neglected, as has

General Introduction and Contents

been pointed out in F-V and are described in
other divisions, such as Division D on plasticity
and Division E on the epistemological problems
of the fundamental construction of space-time.
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PREFACE

IT was in No. 21 of the RAAG Research Notes,
Third Series, [1] that an idea for clarifying
the intrinsic topological structure of diakoptics
{2] and codiakoptics [3] in application of the
theory of the topolopical dissection (see e. g.
[4]) was first proposed and analyzed. Then,
the information-theoretical foundation of the
efficacy of diakoptics was investigated [5] based
upon the topological foundation [1]. To these
were added the diakoptical eigenvalue analysis
[6] in the author’s Master’s Thesis [7] pre-
sented to the University of Tokyo in February
1960 as a summary of his investigations over
two years (1958~60) in postgraduate courses
under the guidance of Professor Kazuo Kondo
at the Division of Research in Mathematical
and Physical Sciences of the Graduate School.

This paper is mainly based upon Part I of the

Thesis, but an improvement has been made
by adding a new section. The next paper F-
VII [8] is based on Part II of the Thesis.

The author hopes that he has been able to
propose some new ideas in this paper in connex-
ion with topological analysis in the field of
engineering as well as a contribution to the
theory of diakoptics and codiakoptics by clarify-
ing their essential or internal structure and
extending the method.

The author is very happy to express his
hearty gratitude to Professor Kondo for kind
guidance and inspiring suggestions and to

* University of Tokyo, Tokyo, Japan.

UNIFYING STUDY OF BASIC PROBLEMS IN ENGINEERING AND PHYSICAL SCIENCES BY MEANS OF GEOMETRY

sis.

his colleagues, especially Dr. M. Iri, for dis-
cussions and many suggestions. The guidance
and the suggestions of Professor Kondo used
to appear very fantasic at first glance, but the
author has found them to be essentially penetrat-
ing. Dr. Iri’s discussions, covering detailed
and important propositions, many of which
were proposed by him, gave the author much
material which has been included in this paper.
But for these helps and the stimulating
experiences during the later half of the four
years of my life in Hongo Campus, this paper
would have appeared in a more incomplete form.

INTRODUCTION

As science and engineering have been developed
astonishingly in recent years, we now have
many more opportunities than before to treat
large-scale systems in engineering analysis.
But it is not an easy task to handle a large-
scale system as a whole. Therefore, it is more
convenient to tear, if possible, the original
system first into several subsystems and then
interconnect the solutions of the subsystems
into the solution of the whole system. This
is the idea first proposed and developed by
Gabriel Kron into a practical method of solving
large-scale system by tearing. A new word
‘“Diakoptics”” has been introduced for this
method by the initiator himself.

There is no doubt that diakoptics gives
powerful practical means of engineering analy-
It has already been treated by many
investigators (e. g. [2], [3], [9], [10], [11], [12]

Division F
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[13]), and its validity has been widely recogniz-
ed. R. Onodera proposed the method of
codiakoptics [3], [4]. K. Kondo extended the
point of view to the generalized diakoptics [15].
Based on his idea, M. Iri and T. Sunaga discus-
sed the efficacy of diakoptics [16]. Some of the
topological features of Kron’s diakoptical analy-
sis has been discussed by J. P. Roth in [11] and
[17]. R. R. Sabroff proposed some new concepts
on diakoptics [13].

However, Roth’s exposition [17] and the
presentations in some of the papers (e. g. [2])
by Kron himself give us an impression of hav-
ing avoided the expression we would prefer,
as far as a formal statement of the basic
philosophy is concerned. Sabroff’s treatment
[13], in which the equivalent circuits and the
orthogonal network method [18] are combined,
seems most nearly to approach our method.
But his paper as well as those mentioned
above (also W. A. Blackwell and H. H. Kesvan’s
paper [19] as well as J. P. Char’s method of
orthogonal networks [20]) seems, so to speak,
to rely so much upon the physical images of
the equivalent circuits of the torn subnetworks
that they have a tendency to miss the mathe-
matical intrinsic structure of diakoptics. There-
fore, we would not say that the theoretical
foundations have satisfactorily been given for
the methodology of diakoptical tearing.

There are two features of approach to the
foundations of diakoptics and codiakoptics. One
is to investigate the topological features, for
the most important relations between the entire
system and the subsystems are their topological
connexion relations. It is said that topological
invariance is not preserved in diakoptical
analysis [15]. But just at this very point,
topology reveals its power. The efficacy of
the diakoptical, as well as the codiakoptical,
methods consists in utilizing the informations
on the topological characteristics of the net-
works or manifolds to be treated by tearing
the original system. Therefore, its theoretical
foundations must be approached from the point
of view of topology.

The other feature is to clarify the concept
of the informations on networks. The graph
of a network has something more than that
which is translated into the equation derived
from the graph. The ‘“something’ can be
understood to be the information contained in

Topological Foundations of Kron’s Tearing of Electric Networks 323

a graph. Such considerations will be studied
in F-VII [8] along the lines of F-IV [16].
The most important thing is to connect the
above two features, i. e. the topological and
information-theoretical viewpoints, into one.
In this paper, we shall investigate the topo-
logical features of diakoptics. A short outline
of the contents is as follows.

In the first section, a new and generalized
approach to diakoptics, which has been derived
by the topological considerations of later sec-
tions, will be shown as the introductory illus-
tration of the practical importance of our theory.
In sections 2, 3, 4, and 5, we shall try to give
the topological foundations of diakoptics and
codiakoptics of networks using the method of
dissection of combinatorial topology (see [4],
[21],[22] for the theory of topology). The funda-
mental equations of network diakoptics and
codiakoptics are established (in §3, in more
generalized form in §4), and the diakoptics and
codiakoptics are proved to be essentially the
same. Our method extends the ordinary one
in regard to two points as follows. One is
that the so-called ‘“ cut-branches’’ are extended
to more generalized ¢ cut-network X’’, and
the other is that our method is applica%le when
mutual couplings exist between the branches
of the subnetworks X and those of the cut-
network X. In §6 tllle intrinsic structure of
diakoptical eigenvalue problems is clarified by
a normal form of representation. Using this
form, not only is' Kron’s method [2] refined,
but also a new iterative method, which ter-
minates with a finite number of iterations
giving the exact solution, is proposed. In the
last section (§7) the topological characteristics
of subsystems, i. e. subnetwork X and cut-
network X, are studied. The numberlof unknown
variables 0deﬁned in connexion with diakoptics
is discussed. It will be shown that the number
of necessary variables may be less in the
diakoptical analysis than in either the mesh or
the node-pair analysis.

Lastly, the papers in [23], and especially [24]
and [25] may be mentioned as indispensable
references so far as the topological theory and
terminology of networks used in this paper are
concerned.
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1. Introductory Illustration of a New Approach
to Diakoptics and Codiakoptics

Kron’s method of tearing—called “Diakoptics”
by Kron himself—has mostly been illustrated
with the help of the physical image of the
equivalent circuit. This is, as a matter of
course, a very easy method of illustration. But
it seems that not all of the intrinsic structure
of diakoptics could be revealed by relying
too much upon the physical image. By in-
vestigating the diakoptical structure with the
help of the topological theory of dissection,
a quite new approach to diakoptics is made,
by which the method is extended in several
important respects. Moreover, diakoptics and
its dual, codiakoptics [3], become unified, and
either can be derived as a special case of our
method.

In the first section, our method and the
fundamental equation will be explained in a
practical terminology but not rigorously. Its
theoretical derivation as well as the topological
foundation will be given in the subsequent
sections.

1.1. Diakoptical coordinates of an electrical
network. There have been known for a long
time two methods of analyzing an electrical
network. One is the mesh method in which
independent mesh currents * (p=1,2,...,k: k
is the number of the independent meshes) are
chosen as unknown variables. The equation
to be satisfied by the i®’s is

Zgpi? =€q, 1-1)

where (zqp) is the mesh-impedance matrix,
e, is the impressed e. m. f. in the ¢-th mesh,
and the Einstein summation convention is
assumed. Let us call the set (:*) of the varia-
"bles i? the mesh coordinates of the network,
since the excited state of the network is com-
pletely specified by this set.

The other method is the node-pair method
in which independent node voltages E, (a=1,
2,...,m:m is the number of independent nodes,
or m+1 is that of all the nodes in a connected
network) are independent variables. The equa-
tion to be satisfied by them is

ya,bEb:Ia’ (1.2)

Div.F

where (y°%) is the node-admittance matrix and
I is the impressed node current at the a-th
node. The actual excited state can also be
specified by the set (E,) of the variables E,.
Hence we call them the node coordinates of the
network.?

The above two coordinates are related to each
other by Ohm’s law. Let (D%) (a=1,...,m; A=
1,...,n:n is the number of branches) be the
incidence matrix between nodes and branches,
i.e. D§=+1(—1), if the A-th branch starts from
(or ends with) the a-th node, and D%=0, other-
wise. Then the branch voltage drop E, across
the A-th branch is

E,—e,=D%E,, (1-3)

where ¢; is the impressed electromotive force
in the A-th branch. The node-admittance matrix
(y°®) is, as is well-known, represented by

y*®=Diy**D}, (1-4)

where (y*%) is the branch-admittance matrix.
In the dual manner, let (R%) be the incidence
matrix between meshes and branches, i. e.
R5=+1(-1) if the k-th branch is a constituent
element of the p-th mesh with positive (or
negative) orientation and R%5=0, otherwise.
Then the mesh-impedance matrix (z,,) is

2qp=Riz, R}, (1-5)

where (z,;) is the branch-impedance matrix.
The branch current i* passing through the k-
th branch is given by

i —I*=Ryi®, (1-6)

where I* is the impressed current in the k-th
branch.
Ohm’s law is expressed as

"=y *E, or E,=z2,,i". -7

1) The orthogonal network method proposed by Kron
[18] uses both the ”’s and KE,’s as independent
variables. Hence that set (¢?, E,) may be called
the orthogonal coordinates of the network. But in
practical analysis, either the 7?’s or the E,’s are
eliminated according as to whether the impressed
quantities e4’s or I®’s are converted to the equivalent
node current sources or mesh voltage sources, and
the coordinates will reduce to the mesh or node ones,
respectively.
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Then the two coordinates (:*) and (E,) are
mutually related by

I*+ R3i*=y~* (D3E, +e.)
or

e,+DE,=z,;,(Rs?+1I*). (1-8)

Let us define the diakoptical coordinates of
the network which consist of mesh currents
iy(p=1,...,k=k) on some part of the network,
ané) of node voltages E,(a=1,...,m=m) on the
other part. To obtain a éetl of the nlon-redundant
variables (i3, E,;)?’, we may well choose the
variables as follows.

First partition the branches into two parts
(see Fig. 1 where the branches of the first part
are denoted by the dotted lines, and those of
the other parts by the full lines). Take up

all the independent meshes denoted by the
dotted circles which have at least a branch
belonging to the first part as its constituent

4 .
elements, and choose the mesh currents % as

the variables. Next, delete the first part from
the network and take up all the independent
nodes, denoted by the black points which are
incident at least to a branch belonging to the
second part, and the node voltage E, as the
variables. In this way, we can obtainla set of
the independent variables (ig, E,) of a network,
which we shall call the diakoptical coordinates.

Diakoptics and codiakoptics will be shown to
be. methods for analyzing a network by the
diakoptical coordinates. A remarkable feature
is that, if partition of a network is done in
such a way that all the branches are included
in the first part, the diakoptical coordinates
reduce to the mesh coordinates, and if all the

1) The orthogonal coordinates (%, E,), which con-
sists of all the mesh currents and the node voltages
include some redundant variables from the point of
view of practical analysis.
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branches are included in the second part, we
obtain the node coordinates. Therefore, the
diakoptical and the codiakoptical methods con-
tain the ordinary mesh and node-pair methods
as two extreme cases.

The number of variables necessary for the
calculation of a network has been believed to
be larger in the diakoptical analysis than in
either the mesh or the node-pair analysis.
But in our generalized diakoptical analysis in
terms of the above-defined diakoptical coordi-
nates, the number can be made even less than
in either of the two ordinary methods. This
will be shown from the topological structure
of the dissection of a network in a later section

(G2

1.2. Fundamental equation of diakoptics and
codiakoptics. Here we analyze a network by
the diakoptical coordinates. First, we consider
the second part dissected above in which the
variables are E,. The node-pair method will

1
be used to analyze the part, considering the
. P . .
influence of currents :° flowing in the other
part.? Viewed from the second part, the in-

2) The problem of the second part only does not
generally constitute a self consistent problem, i. e.
the sum of the impressed node-currents for each
connected subnetwork of this part does not vanish.
In such a case, let the superfluous currents flow
through branches of the first part to another subnet-
work, so that the sums of the impressed currents
over each connected subnetwork vanish. After that,
we add some voltage sources to the branches so as
to eliminate the voltage drop due to the currents.
This operation corresponds to the conversion of a
part of the current sources to the equivalent voltage
sources. See Fig. 2 where the sum of the impressed
node currents is 7 in the right subnetwork and—/ in
the left subnetwork of Fig. 2(a). We have equivalent
impressed quantities shown Fig. 2(b), where the sum
of the impressed node currents over each subnetwork
vanishes and e=Z1I.

S @ v
(b) N e
- AMAAL- “
I I
Fig, 2
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P
fluence of {° appears as a part of the superposed
impressed node-current sources I! (see Fig. 3).

0

\___,
e = =G

|
|
I
|
i
1

a
We define here an incidence matriz (K}) between
the nodes of the second part and the meshes
of the first part by

—1, if the p-th mesh current flows
0
into at the a-th node,
1

ng +1, if the p-th mesh current flows
(] [\]
out from the a-th node,
1

0, otherwise. 1.9)v

Then the currents Il flowing into the a-th
(1} 1
node from the first part of the network are

Ii— _ K6 (1-10)
0 o

The equation of the second part is written as

a b bp
yHE,=I1-KLi", 1-11)

b
where I! are the impressed node-currents and
ba
(y11) is the node-admittance matrix of the
1

second part only.?
On the other hand, the influence of the second
part appears as impressed voltage sources e,
10

seen from the viewpoint of the first part. These
apparent voltage sources e, are written
10

a
e,=KI1E,.
0 1

10

a
1) K1 can be defined by
0

a a K a K
K1=DlR9=—D1R}.
0 00 10
2) If the second part is composed of several disjoint
parts (two in the case of Fig. 1), (1-11) splits into
as many independent groups of equations.

Div.F

Accordingly by the mesh method, the equation
of the first part, taking account of the influence
of the second part becomes

(1-13)

where eq is the impressed e.m. f. of the ea-th
mesh and (023'6) is the mesh-impedance matrix
of the first part only.®

The equation for the diakoptical coordinates
(ig, E,) is obtained by combining (1-11) and
1.13),"

b P (1'14)
l —KIE, + 2g,i0=e,,
0 1 000 0
or in matric form
/ ab a ( a
sH ki || B | (1
1 ()} i .
. L |= . (1-15)
—K1 =24, 0 eq
0 000 0

" If some impressed quantities are given as

voltage sources in the second part and as
current sources in the first part, each can
easily be converted into the other kind of
sources equivalently (see e. g. [23], [24], also
footnote on p. 325).

We propose the system (1-14) or equation
(1-15) as the ‘‘fundamental equation of diakop-
tics and codiakoptics’’, since all the procedures
of diakoptics and codiakoptics can be derived
from this, as will be seen later.

1.3. Diakoptical and codiakoptical procedures.
The diakoptical procedures and the codiakopti-
cal procedures are proved to be equivalent to
solving the fundamental equation (1-15) by
partitioning the coefficient matrix.

In the diakoptical procedures, we first invert
the upper-left half yﬁ of (1.-15). This corre-
sponds just to soléing the problems of sub-
networks. Then, we must invert the matrix

3) If the first part is composed of several disjoint
parts (there is only one such part in the case of Fig.
1), (1-13) splits into as many independent groups of
equations.
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This procedure corresponds to solving the
intersection network. In the diakoptical
procedures, therefore, it is convenient to tear
the network in such a manner that the second
part of the network consists of several dis-
connected parts.

On the contrary, it is convenient for the
codiakoptical procedures to tear the network
in such a manner that the first part consists
of several disconnected parts, for we have to
start with the inversion of the lower part 533
of (1-15), and then we invert

to obtain the solution for the interconnected
system.

In the diakoptical procedures, if the tearing
is made in such a way that the first part does
not contain any nodes (hence contains branches
only called cut-branches), and each connected
components of the second part have a common
grounded point, the above procedure coincides
exactly with Kron’s approach [2]. On the
other hand, if the second part does not contain
any mesh, the codiakoptical procedures com-
pletely coincide with Onodera’s approach [3].

However, being applicable to more general
manners of tearing, our method may be said
to be an extended one. It is sometimes effective

to tear the network, for example in the diakop-

tical case, in such a manner that the inter-
section network, i. e. the first part of the
network, contains some nodes.

In the following section, we shall clarify the
intrinsic structures of the method using topo-
logical methods more thoroughly.

2. Dissection of Networks

Diakoptics and codiakoptics can be said to be
a method of solving networks by means of
network dissection. We shall study here the
dissection of network complexes. Each sub-
complex thus dissected also constitutes a com-
plex with the relative topology of the entire
complex. We shall deal with the mutual rela-
tions between these complexes, so that the
mutual relations between the solution of the
entire network and those of the subnetworks
will be clarified.

Topological Foundations of Kron’s Tearing of Electric Networks 327

2.1. Network complex. A network is com-
posed of branches (1-cells from the topological
viewpoint) denoted by oi(k=1, 2,...,n:n is the
number of branches) and nodes (0-cells) denoted
by ¢%a=1,2,...,m+1: m+1 is the number of
nodes). It constitutes a 1-dimensional complex
with the incidence relation expressed by the
incidence matrix (cut-set matrix) D¢. But it
is more convenient from the dualistic viewpoint
to deal with it as a 2-dimensional complex X
by adding ¢ meshes”’ (2-cells) in such a manner
that every loop becomes the boundary of a 2-
cells [24]. Then the incidence relation between
meshes and branches is represented by the loop
matrix R{(2=1,...,n; p=1,..., k: k is the number
of independent meshes).

The superimposed physical quantities such
as currents and voltages are represented by
chains (or cochains) of a network complex X
over a suitable coefficient domain. For instance,
a current configuration of a network is repre-
sented by a 1-chain

Cl=s*g},
and a voltage configuration by a 1-cochain
C1=u4a‘}

where s*(u,) denotes the current in (or voltage
across) branch k.

The network analysis can be done using these
chains and their (co-)boundaries (see [24]), it
can be said, in quite a topological manner.

2.2. Closed and open subcomplexes. We dis-
sect a 2-dimensional network complex X into
two parts X and X. In our dissection of §1,
the first part }0( slhould satisfy the condition
that all the meshes having at least a branch
of X as constituent elements should also be
congained in X. More precisely, all the elements,
of whose faces at least one belongs to )g,should
also belong to X. This means that StX=X,
(St)§={a’|a’>g? Nean
that ¢ is a face of ¢’).

05{)(}, and a’>g means
Such a part X is said
to beoopen, and )0( constitutes a subcomplex of
X with the relative topology [4]. Being the
complement of X, the other part X constitutes

0
a closed subcomplex of X, i. e. all the elements
which are faces of at least one element of X
1
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also belong to )1(, or le(:{(, (Cl}1(={a’]a’<¢{,
geX).

! ’i‘he pair (X, X) is a dissection of X. The
first part X sho&ld be composed in such a way
that, if Xocontains a node it also contains all
the branghes incident to the node, and if X
contains a branch it also contains all the mesheos
incident to it. Its complement X becomes
closed, i. e. if X contains a branchl(mesh), it
also contains alll the nodes (branches) incident
to it.

It must be noted that each {( (#=0,1) does
not necessarily compose a connected subcomplex,
since in diakoptics we have more than one
closed subnetwork, of which X consists. In
Kron’s diakoptical analysis, his1 cut-branches,
with their incident meshes, constitute X. An
example of the dissection is shown in 0Fig. 4,
where the full lines represent the elements
(nodes, branches and meshes) of X and the
dotted lines show the elements of %(.

The diakoptical coordinates may be said to
consist of the (homologically) independent mesh
currents (2-chain) in X and of (cohomologically)
independent node voltages (0-cochain) in {(

2.3. Projections to and injections from sub-
complexes. Our aim is to solve a network
problem on the original complex X with the
help of subcomplexes X and X , for it enables
us to use the topoloéical inoformations more
completely than by any other method. Hence
our present purpose is to find the relations
between the groups of chains, cycles and
boundaries of X over a suitable coefficient
domain and thoge of X itself. To investigate
these relations, four fundamental chain trans-

Div.F

formations = and ¢ (=0, 1) will be defined, and
they will pléy im;;ortant réles, as follows.

The projection 1: C—»C is naturally defined
regarding the Xpart of a chain C(eC) as a
chain C(eC) of X where C is the group of
chains of X and C is the group of chains of X

(Z=0,1). We shall write
C=C, =C=C
1 10 o
or shortly
C=C

This operation z is called the ‘‘ projection of X
onto X, Physwally speaking, to operate x on
a cha1n C means to regard physical quantltles
(such as currents) represented by C as those
of X.

Since the elements of X are among those of
X, we have an injection z C—»C by regarding
a chain of X as a chain of X itself. We call
the operatlon ¢ the ““injection of X into X.
This means ;;hysically that we regard the
physical quantities of X as those of X.

The following two reiations are easily proved
from the facts that X= X+X and each X is
the complement of the other

er+r=1 (identity operator), (2-2)
11 00

mt=0,; (Kronecker’s delta). (2-3)
17

From (2), we have the following theorem:

Theorem 1. No informations are lost by operat-
ing nr+é7r on a chain of X, that is, by projecting
a chain of X into X and X respectively and then
gathering them by the in jeg‘tzons from both {( and

X.
)

This theorem shows the validity of using the
dissection processes or ¢ diakoptics” as a
method to solve network problems. (2:3) means.
that )1{ and )0( have no common element.

2.-4. Boundary operator of X. In sub-

1
complexes X and X, the incidence relations
1 1)
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are the same as in X.1> Therefore the boundary
operators 6 in X and 6 in X are so defined

that BC is the X-part of BC where C is the
m]ectwn of C 1nto X. Thus we have

@4

These can be rewritten in matric form using
R and D¢

R;i,: when operated on a 2-chain {sf},
1
o= (C?=s%03)
1

-

—
)

A

: when operated on a 1l-chain {s%},

b

orop OROx

when operated on a 2-chain {s3},

°oQ
I
)

: when operated on a l-chain {s§},

where a, k and p(i=0,1) denote the nodes,

branches and meshes belonging to X. Since

X is closed, 9(¢C) is always on X only, so that
11 1

we have
(2-5)

wde=0,
01

or

I
k=)

~—
U ®
RO HYOX

Il
bad

—_—

But X is not closed and B(zC) may have an

X part Therefore we have a non zero operator
def
n0e=0, (2-6)
10 10
) Ri: when operated on a 2-chain of }0(,
—) 0

10 a .
D,:‘): when operated on a 1-chain of X.
0

1) The boundary operator @ in X is represented in
matrix form as follows;

o= {R;‘,: when operated on a 2-chain (z?), C?=i"¢2,
D¢2: when operated on a 1-chain (%), Cl=i*g}.
The coboundary operator 8 is also represented by
JD':: when operated on a 0-cochain (E,),
/)

_ Co=E,a3,
IR;: when operated on a l-cochain (E,),
C,=E,o%.

9 is an operator which transforms C* into
10 V]

C"l, consisting in taking the Xpart of the
boundary B(zC) of C in X. Hence, 3 represents
the connexxon relatlons of X and X and the
influences of C are carried over to 0C through

(]
this operator, as we shall see later.
Dually to the above, the coboundary operators

zg in X and 8 in X are defined as follows,
0 1 1

def def
d=mnde, d&=mde,
0 000 1 111

@7

or

/

D;:

Xy

when operated on

a 0-cochain of X,
3 %
: when operated on

- e

‘(

i

|
IRY:
! a l-cochain of X.

\ %

Since X is open, a(zC) has the Xpart only, so
that we have

wde=0
10

2-8)
or

jDﬁ 0,

A 1

l RS=0.

1
But }1{ is not open, and 8(¢C) has sometimes
11

an %(-part. Therefore, we have a non-zero

2-9)
or

Dg: when operated on
0
a 0-cochain of X,
o= 1
01 x
RY: when operated on
a 1l-cochain of X.
1

oa is an operator which transforms C into C',.+1
and the influences of C are carrled over to C

through this operator
Examples of these operators are as follows
(see Fig. 5):

doi=09—0a}, doi=0},

1 0

gag gi+aol+al, dol=o0},
1
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1800,}=a‘1’, 0510"1’=a41,
003=0al, dol=03.
0 01
In order to be sure whether these X’s with
boundary operators 9 (3) fulfil the conditions
% i
for a set to be a complex or not, the relation
00=0 (60=0) needs to be proved.
id 44
Proof: From tr+ir=1 and z:=4,;, we have
11 00 iJ
0=(tm+m) 0 (¢em +em) 0=(em+em)d(em+em)
11 00" 11 o0 11 00" 11 oo
=¢0r+¢0 w40, =tdr+¢dmw+edm,
111 1100 000 111 0011 000
0=290 0=40
=t00r+¢00mw+¢00xm =¢00n+¢3dn+¢0dr
1111 11100 11000 0000 00011 00111
+¢00r. +¢d0m.
0000 1111
Operating ¢ from the right and = from the left, we have
% . %
00=0, 00=0. (2-10) 00=0, 88=0. (2-11)
00 11 11 00
We see that the operators ¢ and =7 commute of dual chain-mappings.
. 1 1 .
with the boundary and coboundary operators: 3. Network Analysis by Dissection (1)—No

0t— 0= +¢m)0t— emde=emde=0,
1 11 11 00 1 11 1 00 1

mé—0n =70 (¢w+m)—ndenr=7d,w =0, J
1 11 1 11 00 1 11 1 oo
(2-12)

and that ¢ and = are dual mappings,
1 1

[*:7{', ¥ =

¢.
1 11 1

Therefore, (¢, 7) is a pair of dual chain-map-
1
pings.? In the same way, we have

o —7m0=0, dt—¢d=0
00 o0 0 00

Hence, (x, ¢) is another pair
o 0

1) A chain transformation , 7: X—Y, txl=ai(p)y®
is called a chain mapping, if ¢ commutes with the
boundary operator, 70 —07=0. The dual mapping
T* Y*>X*, of 7 is defined by t*yj=ai (p) zk.

mutual couplings existing between X and X.
1 0

3-1. Problem. The problem of linear electric
networks can be stated as follows:

“Given current sources Di=T%g¢1? and
voltage sources D,=e;0%, we require
Cl=i*¢! and C,=E, 0%, such that 0(Ct-D1)
=0(D2(i*—1I*)=0) and §(C; —D,)=0 (RA(E,
—e,)=0): Kirchhoff’s laws,and i*=y**E, or
E;=Z,.i*: Ohm’s law.

2) 1f node current sources D® =1%¢9 and mesh voltage
sources Dy=e,08 are given, we can reduce these
to equivalent branch current sources D!=I*g1 and
voltage sources D, =e;0{ where I*=Dg2]*
R%e, holds.

For example, we can put I*=Rt]°, ¢, =Die,,
where (Rf) and (D) are a tree matrix and a cotree

matrix [24], respectively. A current source is to be
connected in parallel with a branch such as

hcal-—e and a voltage source is to be connected

in series with a branch such as M-

> €p=
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We know already two methods of solving
the above problem, one concerning the mesh
characteristics of the network and the other
concerning the node characteristics. The third
method by dissection, now to be proposed, uses
both methods simultaneously. Before describ-
ing the method, we assume the following two
simplifications.

1. The given network can so be dissected that,
in the first place, the given current sources
Di=1I%0! lie on the X-part only, and the given
voltage sources Dlzeljoi lie on the X-part only,
i.e. °

x#D1=0, n#D;=0. 3-1)
0 1
As we can convert branch current sources into
the equivalent branch voltage sources, and vice
versa®, this simplification can always be satis-
fied, so that it does not impose any essential
restrictions on our method.

2. In the second place, there are no mutual
admittances (impedances) between any branches of
X and any branches of X.

1 0

Since y** can be regarded as a mapping
y:C,={E;}»>C'={i*}, we may write this
assumption as

3-2
(r2e=0, wz¢=0) J 3-2)
01
We define the admittance and impedance
matrices of X as
(33

Y=rYyt, T=T2,
L 1 i T 1

k3 i

and we see y-z=z-y=1(unit matrix), for

i i

y @)

i

T=TMYMRL=TY2 —TY(Te
i i i1 4 t1 i i Jji <
=mr¢=1.

i4
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we obtain
y=(en+ )y (em+em) ]
11 00 11 00
=tyT+ Y7, 3-4
111

000
=W+ (IT.
1 000

In matric forms, these are represented as

In ordinary cases, mutual couplings, even if
they exist, concentrate only locally, so that
this assumption will be satisfied in most cases,
if we dissect (tear) the network appropriately.
The more general case in which this assump-
tion is not satisfied will be dealt with in the
next section, by extending the method.

3.2. Fundamental equation of diakoptics and
codiakoptics. Under the above assumptions, we
introduce the fundamental equation of our
method as follows:

Taking account of

Kirchhoff’s 2nd law

3(Cy—Dy)=0
(R5(E,—e,)=0),

Kirchhoff’s Ist law

a(C*—-DY)=0
(D3 @*—-1%)=0),

1) For given current sources D!=I*g} we have D} =¢€30}=(2;,1%)0}, as the equivalent voltage sources,
and conversely, for given voltage sources D,;=e¢,0%, we have D'=I'"gl=(y%*e;)o} as the equivalent

current sources.
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we can put

C,-D,=4C,
(Ec—e.=D2E,).
Operating on this by = we have
1

Cy=m3Cy,=8C, (+3-5)
101 11

(E.=DiE,),

11 i1

for 7rD1-O and 7:5 67r
law 1n X
Next, from m0(C!'—D1)=0, we have
1

This is Kirchhoff’s 2nd

3(Ct-DY=—-3Ct  (43.6)V
11 1 100

(D E- 1% =~ piid)
1 0

using na 3rr+ 37: and 7rD1—0 This is Kirch-
hoff’s lst law 1n X Slnce y-—:yn’+:y7!' Ohm’s
law in X takes the form

Ct=yC,,
1011
or

id=ytig, (+3-7)

Substituting (+3-7) in (+3-6) and using (+3-5),
we have

0y6Co=0D1—- 9 C*

1111 11 100

(DIy'iDiE, = DIri_pip).
1 11 1 0

(+3-8)

Combining (+3-8) and substituting (+3.5) in
it, we obtain the fundamental equation of
diakoptics and codiakoptics

393C¢+089C2=0aD1, ?

1111 1000 11

3 3Cy+020C2=4D,. j
0111 0000 00

(3-9)

The fundamental equation (3-9) is rewritten in

the matrix form

1) 7r3 Bn- za(nr+m)—7zam' moemr= 0 7.
111 1 00 100

Div.F

we can put

Ci-D1=03C?

(*—I*=R3iv).
Operating on this by = we have
0
Cl=70C?2=9C? (—3-5)
0o o 00

b= RIS,
0 (]
for nDl’O and o= az This is Kirchhoff’s Ist
0
law m X
Next, from gr&(Cl«Dl):O, we have

3(Ci-Dy)=-13C,  (=3.6)®
00 0 011

O(E. —¢)=_Ri
(Rﬁ(ES 8'6) R’éEi‘)

using 7:8 6n-+ dr and nD1—~0 This is Kirch-
01 1
hoff’s 2nd law in X Smce z=¢2w+¢zw, Ohm’s
111 000
law in X takes the form

Cy=2C1,
1] 00
or
E,=Z,id. (—3-7)
0 00

Substituting (—3-7) in (—3- -6) and using (-3.5),
we have

320C2=0D, —3 C,

0000 00 011

(=3-8)

From 99=0 or D?R5=0, we obtain

0=DiR,= DiRS+ DIRI. (3.10
0 0 0 1 0

2) md— 67:—n3(zﬂ+en‘) —mé(r=mnder= dr.

0 0 00 0 11 011
3) This relatmn 1s also obtained by operator cal-
culus:

0= ﬂaaz—na(zn'—}-nr) a(—aa + 00,

110 100
and, in a 51m11ar way, we also have 0=4840 + 8 4.
001 o011
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Defining K D1R°— —DlR.,, we interpret K1

as the 1nc1dence number between a node a of

Xand a mesh g ofX Of course, the element of K1

are simple lntegers 0, =+1.

fluence between C, (E,) and Cz(z’o’) are repre-
1 1 °

The mutual 1n-

sented by means of this matrix Kf (or the
0

contragradient operators 99 and 00). Putting
100 1

00
%t _ pl,fip] 8o, RE
y :ny lDXy zﬁqupziquy I
1 1 1 000 0 00 0
o . (3-11)
I'=DlI' and e,=Rle,, J
1 )

the fundamental equation (3-9) is rewritten as
follows.

The fundamental equation of diakoptics and
codiakoptics can be represented by the matnc
form

ab a
%,11 K% E, It
.......... I Ry
Ky izl i

The E,, s and bs constitute the diakoptics
coordlnates of the network. We can solve (3-12)
by partitioning the coefficient matrix. In this
method, Kg
more than to solve the problems of each sub-
complex X. This is the method of diakoptics
and codlakoptlcs

is so simple that we need little

3.3. Diakoptics and Codiakoptics. Usually
we dissect X in such a way that X is composed
of several disconnected subdivisiz)ns and that
no mutual couplings exist between them, or
that X is composed of several disconnected
subdivisions and no mutual couplings exist be-
tween them. In the former case the coefficient
matrix of (3-12) assumes such a simple form

as
/ 0
/.

Yy
1

=2

on
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wheredenotes aminor node admittance matrix

.corresponding to a disconnected subnetwork of

X Therefore, it is convenient to solve 3-12)
by partitioning, begmmng practically with the
inversion of y“.” This procedure is the
‘“ diakoptics ”’. !

In the latter case, it is more convenient to
begin with the inversion of Zpg in solving (3-12)
by partitioning, since the matrix becomes such
a simple form as

©

on

/

where Eédenotes aminor mesh-impedance matrix

corresponding to a disconnected subnetwork of
X. This procedure is the ‘“ codiakoptics "’ [3].
’ In these cases the amount of labour of
inversion by partitioning the matrix is far
smaller than ordinary method of the mesh
type or node-pair type analysis. This is because
we utilize the topological informations of the
network in order to shorten the sequence of
our procedures, by first dissecting it into X
and X

In the above explanation, it has become clear
that dokaiptics and codiakoptics are two dual
methods and their fundamental equation basi-
cally the same, either (3-9) or (3-12). The only
difference is that m partltlomng we begin with
the inversion of y“ in the former case, and
with the mverswn of Zpg in the latter case.

More detailed procedures of calculation by

1) The inverse of a matrix

T3]

by partitioning begmmng with the inversion, of the
minor matrix A, is written in the partitioned form

as
A-1(I+ BSCA-1

M=
where S=(D—CA~1B)~! and I is the unit matrix.
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dissection, i. e. diakoptics and codiakoptics, will
be given in section 5. Before so doing we shall
first investigate the possibility of extending
the method to the more general case in which

some branch-couplings exist between X and X.
1 1)

3.4. Examples.
Example 1: Write down the fundamental
equation of the network shown in Fig. 6.

We can directly write down the fundamental
equation of diakoptics (the number of variables
is 8 in the diakoptical method whereas that by the node-pair method is 9):

yry+y -y -y 1 EN (I
1 2 3 1 3
-y ytyty -y
1 1 4 6 6
-y -y yHy+y
3 6 3 5] 6
yty+y -y
7 8 9
0 A
—y -
9
-1 1
1 -1

where If is the applied node current and e

is the applied mesh e. m. f., and (Eqa» ig) are
the diakoptical coordinates of the network,
the blanks in the matrix meaning 0.

Example 2 Write down the fundamental
equation of codiakoptics of the network shown
in Fig. 7, and then compare it with the ordinary
node admittance matriz.

The coefficient matrix of the fundamental equation of codiakoptics is

1 2 3 1 2 3 4 5 6
y+y+y - -y -1
1 2 5 1 5
nodes 2 -y y+y+y -y 1
of X 1 1 3 6 3
o3 -y -y y+y+y 1
5 3 3 4 5
1 z+z+z —z -z
1 2 4 2 4
2 1 -1 -2 z+z+z2 —2 0
2 2 3 5 5
3 —2 -2 2+z+z2
meshes 4 5 4 5 6
of X | L s
0 4 -1 z+z+z —z —z
7 8 10 8 10
5 0 —z 2+z+z —2
8 8 9 11 11
6 —z —z z+z+z2
10 11 1011 12
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The node-admittance matrix has a more complicated form as
nodes
of X 1 2 3 5 6 7 8 9
17 . _ _ a1
Yty 7 b4 3 -7
2 -y yiyty4 =t —y -z 5
-1 1 7 i 7 4 7 _.;y
3 -y ~y YAy 4y betpet -1 -zt
5 E] 3 d a5 5 o [ 5 —y
1 21 2 lgp a1 -1 —a1 *
a 1 2 3 z :':
1 —271 lpe-ig -1 -t
3 1 4 ¢ 2
6 —z1 —z1 —z1 R e
5 e n 2 3 5
7 —z1 2 lga=1a -1 -z 1
7 7 3 ] -
s Cimn Zlgesligt —2=1
~ 10 {I 10
9 -y -y -y ¢ ——1

4. Network Analysis by Dissection 2)—Mutual

couplings existing between X and X
1 [}

4.1. Problem and the mixed expression of
Ohm’s law. In the general case, the problem
of networks can also be stated in the same
manner as in subsection 3-1. Let us also
assume that

7D'=0 and 7D, =0, 4-1)
0 1

that is, the given current sources Di=1I*g! lie
on the X-part only and the given voltage sources
D;=e,0} lie on the Xpart only. Such a dis-
section is feasible w1thout loss of generality
and it does not impose any restriction on our
method.

Since there are mutual admittances (im-
pedances) existing not only between branches
of X and between those of X but also between
bra:u:hes of X and branches of X we have
non-zero operators,

def

Y=rye, y=rye,
io 170 01 0”1
def def

z=mz¢ and z=rz,
10 10 01 0 1

and we cannot proceed as in the previous
section §3. Hence, we have to utilize here an
alternative representation of Ohm’s law.

Ohm’s law represents the relations between
the voltages across and the currents in the
branches as the characters of the branches
themselves, which have nothing to do with the
connexion relations. As the admittance and
impedance representations for Ohm’s law, we
already have

Cl=yC,
or
kA K2
CH) (¥ 1 (Cy) () | 211510 || E,
1 _ 110 1 1 - 1 10 1
Cl C S K KA K2
s oy1% ol to 01500 E,
01 0 0
(admittance representation) 4-2)
and
C,==2C1. (4-3)
(impedance representation)
Here, we use the mixed representation of

Ohm’s law such as

or (49
K k2
it | [ Y1 E,
1 K
E 1 ;0
6 It :

where the Y’s have the dimensions of admit-
tance, the Z’s the dimensions of impedance,
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and the @ ’s and /z s are non-dimensional.

Let us express these constants Y a, p and
Z by means of the impedances =z or tlhe admit-
tances y. From (4-2) and (4-4), we have

Yoa) (37 8y

= (4-5)
¢t Z -y ly yt
o1 1] 0 01 []

In a similar way, we obtain another expression

Y « 27l —z7lz )

1 10 1 1 10
= . 4.6

r Z 227l z—z27lz J (4-6)

01 o0 011 0 011 10
C,=0C,, (+3-5)
1 11

9C1+ 3 C1=09D". (+3-6)

11 100 11

Div.F

It must be noted that the mixed expression of
Ohm’s law or the branch characteristics is not
merely theoretical but tangible. We can measure
the constants Y a, ¢ and Z directly, and this
needs as much 12;.%02111' as measurlng the con-

stants z(z, 2, 2z, and z) or y.
1 10 01 0

4.2. Fundamental equation of diakoptics and
codiakoptics in the general case. All prepara-
tion now having been made, let us solve the
equation. In the same way as in subsection 3-2,
Kirchhoff’s laws are rewritten as follows.

But in this case, Ohm’s law is

C1=YC +aCl. (+4-7)

11 100

Hence, substituting (+4:7) in (+3-6) and using (+3-5), we obtain

6Y8Co+(3+

«)dC2=09D1. (+4-8)
1111 10 11000 11

Combining (+4-8), we obtain the fundamental equation as follows;

f 3Y2Co+(3,+9@)2C*=aD",
111 110 00
l (3 +3)3Co+020C*=0D;,
01 0 0000
or
a K2 b a a x 2 q a K
piyiiDiE, + (Ki+ DiaiRY)i®=DIiL, 1
1 1 1 0 1100 0 1
Ki+RY 4 1DYE,+ REZ,, RE:S = ROe J
— 1= .
(Kt Rppd D) Eyt ReZye Ry =533
4-9)
Putting
ab a K2 b 2 K
vit_piviipi, z,,=R3Z, RS,
1 i i 086 §706° 0
t_ plair} and pizR3,iD!
gg=Drxafte and fz= 7Y

C1=0C?, (—3-5)
(1] 00
oC,+ 8Cy=08D, (—3-6)
00 011 00
Cl—pCl+ZC1 (—4-7)
011
C2+(3+0p)8Cy=08D,. (—4-8)
01 00111 00
(4-9) becomes
ad a a a
yi1 Ki+al E, I1
1 0 100 1
K b . = .(4-10)
R At ces )it ) (%

Comparing this equation with (3-12), we find
that the interaction between CO(X) and CZ(X)
is described, in this case, by means not only
of the incidence matrix Kq, but also of [ and
¢, which represent the mutual couplings of

01
branches between X and X.
1 0

ab .
In the case when Y11 is very simple, it is
convenient to solve (4:10) by partitioning, be-
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ginning with the inversion of Y'lnl,. This pro-
cedure is ‘“diakoptics”’. In anolther case when
Z g is very simple, it is convenient to begin
w1th the inversion of Z,, in solving (4-10) by
partitioning. This procoedoure is “‘codiakoptics’’.

If many pairs of branches have mutual
couplings, not only Y11 and {M but also K+o§)
and —K+p, in our coeﬁ‘ic1ent matrix of (4-10),
have very 1comphcated forms. Therefore, we
shall have to proceed practically in a way
similar to the ordinary partitioning of a matrix.
On the contrary, if no mutual couplings exist
between the branches of )1( and the branches

of X, then we have
[

a=0, p=0,
10 6ux
and
ab ab
Yyl 72—z,
1 1 088 088

Therefore, in such a case, (4-10) is reduced
to the (3-12) of subsection 3-2.

Diakoptics and codiakoptics are feasible even
when some mutual couplings exist between
)1{ and )0( provided they are simple.

1 2 3 4 5
y
1

y

2

“
e

o N SR

i

I
© 0 N U s W N
o

—
(=

11
12
13
14
15

where a; and @, are the a’s (current amplifi-
cation factors) of Transistor 1 and Transistor
2. (We can see that the mixed expression is
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4.3. Example: Transistor circuit. Let us
analyze a transister circuit (Fig. 8). The T-
equivalent circuit of a transister is shown in

Fig. 9. Therefore, we only need to analyze
the equivalent circuit shown in Fig. 10. The

e z 92
ol 2 TR e 6
Y y i :
2 ‘ | J ¥ 3
7 H £ SERNE AT S AN
S VN L\ \
’ll 15 .
X !tear X ¢ tear X
1 \ ! 1

branch characteristics of this equivalent circuit:
are shown by the mixed expression of Ohm’s
law as

6 7 8 9 10 1112131415
0 .
Ly
y
6
y g
7
y
8
y
9
y
io
4
11
z
12
0 z
13
P4
14
z

very convenient for transistor and vacuum-tube
circuits.) The fundamental equation can direct-
ly be written
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1 2 3 4 5
1/ y+y -y :
1 2 2 :
2| —y yty+ty -y 0
2 2 3 4 4 ;
3 -y y+y i
4 4 5
4 y+y -y
6 7 7
5 0 -y yty+y
7 7 8 9
6 -y
9
1 -1
2 -1

We solve (4-11) by ¢ diakoptics”, i.e. by
partitioning the matrix beginning with the
inversion of Y. The interaction terms between
X and X, i.el. K+a and —K+p, are so simple
tlhat we 0need littlcleo more thar?lto invert two
3x 3-matrices and one 2x2-matrix.

5. Procedures of Diakoptics and Codiakoptics

In this section, let us show the practical
procedures of diakoptics and codiakoptics based
on the topological foundations studied in the
previous sections. That is, we solve the funda-
mental equation by partitioning of the coefficient
matrix. These procedures will be shown to
include the ordinary procedures of diakoptics
and codiakoptics so far adopted by a number of
investigators. For the sake of simplicity, we
discuss only the case in which there are no
mutual couplings between X and X, but the
generalization to more genéral cases will be
carried out along the lines of subsection 4.

5.1. Diakoptics.
following equations

f 0y3Co+ 8602~3D1

In diakoptics, we solve the

1111 100 0
l 33C,+ 6zaC2—6D1,
011 1 0000

or the matrix equation

ab a

s ki (g, (£

1 . 1_ -1)
—_ 1 ;

Re zapllip) e

by partitioning, beginning with the inversion
ab
of y11,. We proceed as follows:
1
Solving the upper half of (5-1) with regards
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9 1 2
E, It
oy E, I2
1-ay E; I3
1-a, E, I
= . (4-11
—y a ||EB || 1| @D
9
y+y Eg I8
9 10
z+z+z -z il ey
11 13 14 13
—z z+z+z || i? ey
13 12 13 15/ 1\
to E,, we obtain
Ey=z2,,I1—2,,K1, .
=il iy 5-2)

where ﬁ,i,:(:i:ﬂ)“l is regarded as the solution
of the problem concerning the subnetworks.
Calculating Zpgr aS well as Zpa I1 which is the
node voltage of node & of the torn subnetworks,

1
corresponds to solving the subnetworks.
Substituting (5-2) in the lower half of (5-1),
we have

;B I )
Zgpi e3+K8ﬁi‘I (5-3)
where
b a
" Klz, .K1 .
i T Tt Te G4

is the mesh-impedance matrix of the intersec-
tion network. Hence to obtain zqg is to compose
the intersection network.
Solving (5-3), we obtain the mesh currents
¥ in X
[

P pg b a
=y"%%(eg+ Kjzpolt), (5-5)
0 0111

on

where

80% (= '18) 1,

Therefore, the intersection network is solved
by this procedure.

The solution E, of node 4 in X is obtained
by substituting (51-5) in (5-21)
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The latter term, calculated from 8 of (5-5),

is the supplemented term by intersection net-
work.
The branch currents and voltages are easily

obtained from (z“?, E'f)’

(5-6)

I
™
ey .
o]
)
—_——

We thus see that the diakoptical procedures
coincide with our method of partitioning the
fundamental equation.

These steps can be summarized in Diagram 1.

Dimension

:cochain ;

. . 0 P
Dimension ’ )

Diagram 1. Diakoptics

When the impressed quantities D°(I*) and
D, (e;) are not yet explicitly given, we have
only to calculate z,, and y’88 (these are called
the factorized im1v1erse matrices [2]). There-
after, if these impressed quantities are given,
we can immediately calculate the response

., . . Ipq
quantities using z;, and y°0.
111

5.2. Codiakoptics. In codiakoptics, we solve
the same equation (5-1)

ab a
si K| (B, | [ 1
1 1
b = ’
—-Ki = i e
q a q
0 008 g 0

by partitioning the coefficient matrix, but
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beginning with the inversion of Zqp in this case,

we proceed as follows:
. Solving the lower half of (5-1) with regards

» .
to %, we obtain

(67

where y58=(zq8)'1. Calculating 3733, as well as
V] 00

ygge,,, is to solve the subnetworks of codiakop-
5. 0

tics.
Substituting (5-7) in the upper half of (5-1)

we have

ab a a q
yiiE, =1 -Kiybe, (5-8)
1 80 0
where
ab ab a paq b
yii=yiis K1y K] (5-9)
1 00 0

From (5-8), the node voltages E,i in {( are
obtained as

(5-10)
where

(5-11)

By equation (5-9) the intersection network is
constructed, and (5-10) is the solution of the
network.

Using (5-10), the mesh currents s are
obtained

the latter term having been supplemented by
the intersection network.

The branch currents and voltages are obtained
by (5-6). Therefore, our method includes also
the codiakoptical procedures.

These practical steps can be summarized in
Diagram 2. It must be noted that Diagram 2
is the same as the previous diagram (Diagram 1)
of diakoptics. The two are distinguished from
each other only by their different starts. This
shows that diakoptics and codiakoptics are
essentially the same.

When the impressed quantities are not ex-

plicitly given, we have only to calculate y88
[\]
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and 2',,. If these quantities are given, we can
11
immediately calculate the response quantities

q
using y5° and 243
0 11

Dimension

X
1
X
|
|
i open
ty
4 1. ¢
e
|
: Cy X
C ] !
1 F H \061 closed
{cochain; - X
D
start/ DiCia \ =
\ 0
X
0 1 27Dy ©
Dimension v open
Diagram 2. Codiakoptics
6. Eigenvalue Analysis by means of Diakoptics

There has been some diakoptical analysis of
eigenvalue problems by equivalent networks
[2]. The methods employed so far being some-
what complicated, a simpler and more com-
prehensive formulation should be sought. This
could be done using our fundamental equations
with the diakoptical coordinates, as follows,
by defining a normal form of the matrix of
diakoptical eigenvalue problems. Two methods
using the normal form will be shown.

6-1. Equation of eigenvalue problem by
diakoptics. An eigenvalue problem is repre-
sented by

(A-2I)x=0, 6-1)
where A is a symmetric square matrix, I the
unit matrix, A the eigenvalue to be determined,
and x the eigenvector to be determined. In
the case of the eigenvalue problem of a field,
He—1¢=0, (6-2)
where H is an hermitian operator and ¢ is
the eigen-function, the general analytical
problem can approximately be reduced to an

Contributions to Diakoptics
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algebraic problem such as (6-1) by approximat-
ing the differential operators by difference
operators.

The problem (6-1) can easily be translated
into an equivalent electrical network
problem. In this representation, the
eigenvector x is represented by the
node-voltage vector E=(E,) (E, is the
voltage of a node a), and the matrix
A—2I plays the rdéle of the node-
admittance matrix.

Since our node-admittance matrix is
A—21, the network contains n branches
having negative resistances whose admit-
tances are the indeterminate eigenvalue
— 2, where n is the order of the matrix,
i.e. the number of the independent nodes.
Every independent node is connected
to the earth point by one of the branches
whose admittances are —2; for an ex-
ample see Fig. 11.

closed

tear
1

|
-cx.\bbranchl

ala]

Our eigenvalue problem is to obtain the eigen-
value 1, such that there appears a non-zero
vector E, without any impressed node currents,
i. e. we have to solve

(A~ ADE=0.

This can be done by diakoptics as follows.
First, we dissect the network. In the present
problem, let us dissect it in such a manner
that the cut-network X does not contain any
nodes. Then the imped%nces of the cut-branches
do not depend on A. The subnetwork X (which
may consist of several disconnecte:i parts)
contains all the nodes. On using the diakoptical
coordinates which consist of the node voltages
E,(a=1,2,...,n) and the mesh currents ig(p=1,
2,1...,k), the fundamental equation of diakogtics
takes the following form
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/M ]
4
o h
1 .5
|
53 /1) 0o
// v K (E.
1 0 1
o 1y T :“O)
i /// 2
——————— —_—— e 1——-——‘_-'_
~ K1 I: it
b | o .
\ l A (()'O)

where each of the minors in the left upper
half yﬁ—]l’ represents the node-admittance
matriix of the i-th subnetwork torn apart, and
z g is the mesh-impedance matrix of X (repre-
sented by a diagonal matrix in our case in
which each independent loop consists of one,
and only one, cut-branch). K} is the incidence
matrix between the node & of X and the mesh
(cut-branch) p of X, consistihg of 1simple integers
0, +1. Thus0 we 0obtain the diakoptical equation
of the eigenvalue problem. But we should note
that equation (6-3) has not directly the type
appearing in the ordinary eigenvalue problem,
i. e. the coefficient matrix is not of the form
A—2I, but A—-2I', where I’ is not the unit
matrix although it has a similar form;

6-2. Normal form of the matrix of a dia-
koptical eigenvalue problem. In the previous
subsection, we have obtained the equation of
the eigenvalue problem of diakoptics,

_l'y—ZI i K I;J

R e =0. (6-3)
-K =z i

io 0
But we see that the form of equation (6-3), or

equivalently

(6-9)
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is not invariant under basis transformations of
the diakoptics coordinates.
Since I’ is not invariant, i.e. T-1I'T=I or

1 : 1

for an arbitrary non-singular matrix 7, the
Jacobian method cannot be effective for solving
(6-4). But if transformation is made only in
the subspace composed of E, without changing
the t part, the matrical equation (6-4) is kept
form invariant.

Theorem 2. By a unitary transformation of
the El'-part, the diakoptical equation of the

eigenvalue problem can be transformed into the
following form

-2
Ap—2
. Py
* 1=0(6-5)
-K'T iz i
io 0
where 2’; is the i-th eigenvalue of the subnetwork

X.

1

Proof: Let u be the i-th normalized eigen-
vector of the subnetwork, and

Then U is a unitary matrix, U-*=U7. Adopt-
ing these vectors u as the new basis vectors
i

ab
of the sub-space E, the matrix y!! of the sub-
. 1 . 1 .
network is transformed into the diagonal form

U-lyU=
1
{ 2,

Therefore, we have (6-5), where the eigenvectors
of the subnetwork X are chosen as the basis
vectors of the Epart and K’'=UTK.

1

We call (6-5) ‘“the diakoptical normal form
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of the equation of eigenvalue problems .

To solve the problem by diakoptics is to
solve firstly the subnetwork and secondly the
intersection network by utilizing the solution
of the subnetwork. Therefore, we can start
with the normal form (6-5) which can be obtained
from the solution of the subnetwork. Several
methods will be found for so handling (6-5).
Here we shall propose only two of them, one
of which is that which was propounded by
Kron [2].

6-3. Solution by direct method (Kron’s
method). We shall first show Kron’s method
[2] in a slightly revised form represented in
terms of our theory. Let us consider the
diakoptical normal form of the problem repre-
sented by

-1
Au—2 b0
T e
0 0

where A’;(i=1,...n) is the i-th eigenvalue of

the torn subnetwork. Solving this equation

by partitioning and eliminating E, we obtain
1

-2 -1
2 (A)i=(+KT ' K')i=0.
0 0 [*]

( =2
(6-6)

Therefore, the non-zero vector { can appear
0

when, and only when, the determinant of the

matrix z’(2) vanishes

1 |
| -7, |

|2’| = 2+ KT

Solving this characteristic equation, we obtain
the eigenvalues 2; of the entire system. Using
the eigenvectors i; corresponding to the eigén-
value 2=2; of (6-6), we have the eigenvector
%‘i from the upper half of (6-5)

Div.F
-2,
G—2; 0
g E;|=-Ki,,
1
0 ’
\ 21:'—2_7

(6-9)

in reference to the basis (u,,us,...u,) consist-

ing of the set of the eigenvectors of the sub-

network. The i-th eigenvector E; will be
1

obtained as

E,=UE’,. (6-9)

A special treatment will be needed for such
a degenerate case that there appear some non-
zero IIZ"s in spite of g'=0, no current appearing
in the cut-branches. In such a case, the above
consideration cannot be applied, and the equa-
tion (6-5) reduces to

A1—2
A3—2

(6-10)

Non-zero E’ can appear only when 2 coincides
with one of1 the 2';’s, i. e., an eigenvalue coincides
with one of those of the subnetwork. Generally,
such may be the case when more than two
eigenvalues of the subnetwork coincide. The
eigenvector E’ satisfying (6-10) will easily be
found to be ; linear combination of the eigen-
vectors of the subnetwork corresponding to
the multiple eigenvalue.” When the subnetwork
has some multiple eigenvalues, we must solve
the problem after eliminating the degrees of
freedom corresponding to these degenerated
eigenvectors.

The above method essentially coincides with
Kron’s (cf. [2]), except that the treatment of
the degenerate case is revised.

6-4. Solution by iterative method.?’ A method

1) The original idea for this method was obtained
during our discussions with Dr. M. Iri on this
theme. This method has apparently some similarity
with the escalator method [27].
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can now be developed for obtaining all the
eigenvalues exactly by % iterations (B is the
number of the cut-branches). This is, p%ysically
speaking, to connect a cut-branch to the sub-
network and solve the system so obtained, in
one iterative process. Then, regarding this
new system as the new subnetwork, we iterate
this procedure till all the cut-branches are con-
nected.

First, solving the eigenvalue problem of the
subnetwork, we may start with the normal
form,

A—2 ;
0 :
a3
: 1 1=0,
Mool
S S SO
k{ ~KT 2 || i
) 0 0
where 2 is the i-th eigenvalue of the sub-

network K’=UTK and U is the unitary matrix
composed of the eigenvectors of the subnetwork.
Before we start on the iterative procedures,
it may be convenient to eliminate those degrees
of freedom which have the same eigenvalues
as those of the subnetwork by the method
described in the previous subsection (the
degenerate case). Of course, this is not a
necessary procedure, but it is convenient.

Let us connect a cut-branch, say 1, to
the subnetwork. Then the equation of the
connected system has the normal form

(6-11)

where Kj, is the first column of K’ and z, is
the impedance of the first cut-branch. Expoand-
ing the determinant of the coefficient matrix
of (6-11) with respect to the last column, we
have for the characteristic equation,
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21(Qa =) (A3 —=2) - Gn=BD+Z k12 (2-2)

Qi =) Qara =) (Za—2) =0, (6-12)

where k;; is the i-th component of Kj. If
some components of Kj, say k};, are zero, we
obtain from (6-12) a solution

2—§,~.
This is a degenerate case, and its eigenvector
is the same as u;, the j-th eigenvector of the
subnetwork. If a multiple root 2; exists in the
subnetwork, this is also the eigenvalue of the
new system. Hence, we can immediately find
the eigenvalue and the eigenvector in a degener-
ate case without any calculation. Afterwards
we divide (6-12) by fIl(z,.—z) and obtain

i=

- L 2% k13 k1a® _
F) R by ey +1,.—1 0.
0 [)
(6-13)
Since f(2) has poles at 1=2;(i=1,...,n) and

§1>0, k1:2>0, we see that the i-th zero-point
of f(2), 2; lies between g" and g-‘+1'

SN =A==, ==, =1,.
0 0 0

(6-14)

Since f(4) and f’().)=id()‘i)~ have simple forms
such as (6-13) and

FO=Z ’fﬂz)z ,

(6-14)
and the positions of the roots are bounded by
(6-14), the roots will easily be obtained by
Newton’s method. Thus we can calculate the
eigenvalues 2;’s (:=1,2,...n) of the subnetwork
to which the first cut-branch is added. The
eigenvectors u,;’s of the newly obtained sub-
network are obtained from (6.11) by,

1
Ay—2;
o .

Kiy|. (6-15)

An—24
0
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Thus we have the eigenvalues 1; and the
eigenvectors u;, hence a unitary matrix U
= [u,, u,, ...,l;,,] of the new subnetwork. Theln
weliterate the above procedure by connecting
another cut-branch, say 2, to the subnetwork
where the branch 1 is already connected. when
E iterations have been carried out, we obtain
the eigenvalues and the eigenvectors of the
original system exactly.

We have the following theorem with respect
to this method.

Theorem 3. The i-th eigenvalue A; of the
i
j-th iterative procedure lies between 2; and 2;41,
i-1 i-1
i A= Ai4q-
i~1 4 §-1

6-5. Example. Determine the vertical vibra-
tion of the mechanical system shown in Fig. 12
where four masses have weights 1;

m=1,

- —————
-4

Fic. 13

and the stiffnesses of the springs are respective-
ly

Fic. 12

This system can be represented equivalently
by an electrical network shown in Fig. 13,
where the node voltages E,’s (¢=1,2,3,4)
represent the amplitude of the vibration of the

Div.F

masses, and A=w? (0 is the angular frequency
to be determined). The admittances of the
branches are shown in the figure (Fig. 13). The
ordinary method shows the eigenvalue problem
such that

1 1 \
3§—l -1 —3 0 E,
1 32 o L lE,
2 2 o
1 1 I
-1 0 33-2 -1 ||E
1 1
0 —3 1 31 B
(6-16)
VX Tearing the network
2 /‘ ° 4 (see Fig. 14), the solution
. ./"“”“!/ x of each separated sub-
\‘1 =3 ! (division can easily be
x =3 = obtained. Since the two
! ' parts of the torn sub-
Fic. 14

network are the same,
we may solve only one of them, i. e. the
following equation

(3% —1]ng\
~1 3-1'/1

From this we have the solution of the sub-

network, whose eigenvalues are
21=2, 23=4, 23=2, 2,=4,

and whose eigenvectors stand as the columns
in a unitary matrix

1 2 3 4
1 1
111-1
— (6-17)
=72 11
1 -1)

a\p 1 2
10
1 1
e 2 1
Ki=
(I -1
4 -1

There are two double roots, A’=2 and 2'=4.
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We find from (6-10) that a linear combination
of the eigenvectors corresponding to 1’=2,
(uy+ug)/4/2 is the eigenvector of the entire
system of which the eigenvalue is 2=2. Another
eigenvector of the subnetwork corresponding
to 2=2 and orthogonal to this vector is (u;—
u3)/4/2. Of course, this is not the eigenvector
of the entire system. In a similar way we
find that (uy+u,)/4/2 is the eigenvector of
the entire system corresponding to 1=4.
Another eigenvector of the subnetwork cor-
responding to A’=4 is (us—u,)/4/2. Hence
taking

JE ), ),

1
:\/1—7("1 —us), ﬁ(uz —uy),

as the new basis vectors (they are orthogonal
to each other), the diakoptical normal form of
the equation can be rewritten

E;

The first two rows represent the trivial solu-
tions we have obtained in the above, i. e. 1=2,
A=4 and

u1=;«[1 111], u2=%[l 11 -1].

The other parts yield the matric equation of
the normal form

22} 1 1)(Ej

4-2} -1 1| Ef
............................................. =0. (6-19)

-1 1 2 1

H 0

-1 -1} 3|

The solution of this equation can easily be
obtained by either of the direct or the itera-

tive method. They yield

A3 =2.819540, 2,=4.847127,
and
ug=[.539537 . 457056 —.539537 —.457056],
u,=[.457056 —.539537 —. 457056 .539537].

7. Topological Structures of X and BX
1

As we solve the network problems of X and
X in diakoptics or codiakoptics, we must cllarify
the topological structures thereof. Since the
homology groups of X have such unusual charac-
teristics as do not alppear in X, we shall first
investigate them. Then, adding some meshes
or nodes to X, we shall obtain the equivalent
network of )é' Using it, we shall study how
many unkn(}wn variables are needed in this
method.

7-1. Homology groups of X. Since X is
closed, a 1-cell (branch) of X islincident tolone,
and only one, 0-cell (node) 1of X with positive
sign and to one, and only one, with negative
sign. Hence the character of the incidence
relations between 0-cells and 1-cells is the same
in X as in an ordinary network complex.
Thellrefore, we can conclude (see [24]) that there
are no integral torsion coefficients in the
dimension 0

T5=0,
1

and the 0-th Betti number R° is equal to the
number of (connected) comp(;nents of X. There-
fore, the 0-dimensional integral homololgy group
H?()lf) is a free group with 1120 generating
elements. But the 1-dimensional homology
group H} (}1() of }1{ is quite different from the
H1(X) of X, not only in that it has a torsion
part but also that it may have even a Betti
part®, i. e. I?HFO, while the 1-dimensional

homology group H1(X) of X always vanishes.
As there are no 3-dimensional elements in X
1

1) In X, every l-dimensional cycle can be made to
bound a 2-cell or a 2-chain [24]. Consequently the
l-dimensional torsion group, as well as the Betti
group, can be reduced to nil. But there may appear
the 1-dimensional torsion and Betti groups, if the
boundaries of meshes (2-cells) added to some loops
(I-cycles) of X do not constitute a basis of the group
of integral 1-cycles. (see [25].)
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H2(X) is a free group of rank R2 Thus we
have
Theorem 4. The structures of the homology

groups of X are represented as follows:
1

H(X) =BY(X), l
=BI0+TIX), | @
H3(X) = B3(X).

Hj(X)
1

Hence it should be noted that a 1-cycle is not
necessarily a 1-boundary in X.
1

7-2. Homology groups of X Next, a 1-cell
of X is incident at most to one 0-cell of X with

posmve sign and at most to one with negatlve
sign. Therefore, there are no 0-dimensional
integral torsion coefficients in X,

[}

T5X)=0.

Since X is not closed?, there is at least one
node of X In every connected component of X.
Therefore, every node of X by adding an
appropriate node of X bounds in X, that is,
every node of X bounds in X, hence the 0-
dimensional Bettl number R° (of X is 0. Thus
the 0-dimensional homology group HY(X)
vanishes °

H5(X)=0.

Since X is open, every 2-cell incident to a
l-cell of X is in X Let us assume such an
equation ng 8C2 t01 where ¢ is an integer
and z=2. Then, choosmg an appropriate chain
C1 ofX Wwe can construct a cycle C1+C1 and
thls cycle bounds in X since H} (X) vamshes,
so we have C2~C1+C1 Thus we have
ancs =C1, which contradlcts the assumption
t>2 Therefore the 1-dimensional torsion group
of X vanishes, H1(X)=0. But the first Betti

group of X does not vanish. Then the first

1) If X is closed X is simultaneously open and closed.
ThlS means that X is X itself (since R1=1, i.e. X

0
is a connected network). Such trivial tearing is
excluded from consideration in this section.
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homology group H?1 (X) of X is free group of
rank R1 The 2nd homology group H2(X) of
X is also a free group of rank R2, since there

are no 3-dimensional elements. Thus we have

Theorem 5. The structures of the homology
groups of X are represented as follows:
[)

H%({)():B}({)(), (7-2)
H*}({f):B?(-’g)-

Hence, a 1-cocycle is not necessarily a 1-co-
boundary in X.

Since the 0-th Betti number of X is R,, there
are R, independent 0-cocycles. 1A plllysically
realizable voltage configuration being determin-
ed by the coboundary of a 0-cochain, the node
voltage 0-cochain CO—E ¢? in X has Ro -fold
indeterminacy. As a hase of the group of 0-
cocycles of X, we can choose the fundamental
0-cocycles of each component (a fundamental
0-cocycle is the sum of all nodes contained in
one component). Therefore, this indeterminancy
physically corresponds to the indeterminancy of
the absolute node voltage of the reference
point of each component of X (this can be
determined by considering C, clf X). By tak-
ing the coboundary of Co, tohls indeterminancy
vanishes.

Dually to the above, there are R2 independent

2-cycles, so our C2=z 02 has R2 fold indeter-

minancy, but it vamshes by taklng the boundary
of C2.
0

7-3. Interrelations between various homology
groups and cohomology groups. The structure
of the homology groups of X are clarified above.
We can know the structures of the cohomology
groups of X from the Ist duality theorem (p. 117
of [4]), i. e.

B3(X)=B(X) and T3(X)=T%,,(X),
or equivalently

R"=R, and f,’,:;’,‘+1(i=0, 1; k=1,2,...).
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We know the following exact sequences of
homomorphisms? as the interrelations of
various homology groups [22];

l 7? =
0-———>H2(X)——»Hz(X)—aHS(X)——»Hl(X)
(Rz) (R®) (Rz) (R t”)
(Bettl numbers, torsion coeﬁﬁcxents)

Z ﬁ A : 71'
—~>0—+H1 (X)——>H° (X)——>H° (X)——>O 2

HY(X) (R‘) 1}") (R*=1) H"(X)

and those of various cohomology groups:

i T 3 l
0—"H0(X)——’H0(X)'—-’H1(%{)-——>0
Ho(X) H1(X)

T 3 i T

By (X Hy (00— Hy () Ha (X)

4

—0.
From this sequence, we obtain the relations
R®+R'=R?*+R? (7-3)
1 1 0

and
RO=R!+1. (7-4)
1 V]

7.4. Addition of meshes and nodes. It is
very inconvenient for practical analysis that
subnetworks X and X have such unusual
characteristics 1as mentiooned above. These are
given rise to at dissection only imaginarily
(for there are neither meshes nor nodes, in
reality, but only loops and cut- sets) and have
no important practical meaning. Therefore,
we can eliminate the first homology group HY(X)
by adding some meshes (2-cells) to X, as \}ve
did in the first part of this paper to thelordinary
network X. We can also eliminate the first

1) A sequence of homomorphisms
A, — A — A
is sald to be exact if for each integer 7, the image
of
Tr—1 :Ar—l——>Ar
coincides with the kernel of
ot Ap— Ay
2) 7: H(X)—> H(Y) means the homomorphism in-
duced by
T Z(X)—)Z(Y) (z: F(X)—>F(Y)).
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homology group H3(X) by adding some nodes
(0-cells) to X. HOWevoer, let us first investigate
the numberoof independent nodes 7 of X and
the number of independent mesheslk of X

Denoting the number of the rdlmenglonal
elements of X by a7, we obtain

m=a®—R0O, (7'5)
101 1
and
kE=a?—R2. (7-6)
0o 0o o
Using the Euler-Poincaré relation for each sub-
complex

S =TCD R
or

(a*~R¥)+(a®—R0)=(@'~RY), (T7)
we obtain

E=a?—R?=(a'—R1)—(a®—RO).
0 0 0 0 V] 0 0
Considering (7-4), i.e. R°=R!+1, and R°=0,
1 1 0
we obtain

k=al—(a®+RO-1). (7-8)
0 0 (1] 1

Since
a®+R1=a%—RO—
o o o 1

is the number of the independent 1-cocyles
(cut-sets) in X, we define m by
0

de
m= a0+ RI-1. (7-9)

0 0
Then we have from (7-8)

E+m=al. (7-10)

0 0 0

Let us construct a new complex (network)
X' by adding to X, R°® nodes which correspond
1

to all connected components of X one-to-one.

See Fig. 15. Therefore the first homology group
H} (X) vanishes and m can be regarded as the

[)

number of the independent nodes of X Practi-
cally, we had better use this X lnstead of X
and Kirchhoff’s laws in X are expressed in the
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same way as in the ordinary network.

In a similar way as above, we have
m=a'—(a®+ R?—R?).
1 1 1 0
Since
a®+R1—-R?=q?+R2—-R?
1 1 1 1 0
is the number of the indepentent 1l-cycles in
X, we define & by
1 1

kE=a?+R?_R2. (7-12)
1 1 0

Then we have from (7-11)

E+m=al.
1 1 1
Let us construct a new complex X by adding
R —R? meshes to X and changing some meshes
m such a way that every l-cycle may become
the boundary of a 2-cell or 2-cells (meshes).
Then the first homology group H1(X) vanishes,
and % can be regarded as the nunllber of the
indeﬁendent meshes of )1( Practically, it would
be better to use the X instead of X, and, of
course, Kirchhoff’s lavlvs are express‘:ed in the
same way as in the ordinary network.
In F-VII [8], we shall use these X and X to
calculate the number of independeont meslhes
and nodes.

7-5. Number of independent unknown variables.
The number of the components of the coordinates
(the number of the independent unknown
quantities or the rank of the matrix to be
inverted) in diakoptics or codiakoptics is the
sum of those of X and X. Kron said in his
paper (Part II: 1On‘hogo(;tal Networks of [2]),
‘“When the original uncut system has N equa-
tions, and the system is subdivided into 2
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subdivisions, a set of 2 unknowns appears at
the points of cut (£ in number). Hence it is
necessary to solve for N+% unknowns in n+1
independent groups, instead of solving for only
N simultaneous unknowns. The solution of
these additional £ unknowns is the price the
engineer has to pay for whatever advantage
accrues from the piecemeal solution of N
unknowns .1 But this is not valid for our
more general cases. Using (7-10) and (7-13),
the number of variables in diakoptics or co-
diakoptics is shown to be

m+k=(a*~R%)+(a*~R)=al —m—F.
1 0 1 1 0 0
(7 14)

As m (the number of independent cut-sets in X)
and k (the number of independent loops in X)
have negativesign in(7-14), whereasa1+a1 ~a1—n
is a constant (the total number of the branches),
we can sometimes make m+k (the number of
variables) decrease by dlssectwn less than m
and k. It would be better to dissect X, roughly
speaking, in such a way that X contains the
parts of many meshes (large1 mesh-density)
compared with the number of nodes and X
contains the parts of many nodes (large nodg-
density) compared with the number of meshes.
We shall show two extreme examples.

Example in Fig. 16. In the network shown in
Fig. 16, X consists of two completely connected
subnetworks®, each having s nodes, and X is a

[}

s nodes N s nodces

1) This statement is obviously valid in such cases as
Kron’s in which each subdivision of X has the same

1
grounded point in X, and X (cut-branches in Kron’s
1

terminology) includes no 1-dimensional elements
(nodes). By our definition, however, diakoptics has
been extended to a more general method.

2) A completely connected network is such a network
that each pair of nodes is connected by one, and only
one, branch.
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ladder type network, having s® steps. If s is
very large, the number of the node coordinates
or the mesh coordinates is about 252, to each case,
whereas the number in diakoptics is about s2,
reducing to one half of the former.

Example in Fig. 17. In the network shown in
Fig. 17, X is a completely connected network with
2s nodes and X consists of s ladder-type networks,
each having %s steps. If s is very large, the
number of the unknown quantities associated with
the mesh-type method (i. e. of the mesh coordinates)
or the node-type method is about 4s?, whereas
the number in codiakoptics is about 2s2, reducing
20 one half of the former.
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