Unspecified Journal
Volume 00, Number 0, Pages 000-000

EXTERIOR CALCULUS IN THE IMAGE OF ODD FORMS
WITH THE ORIENTATION CONGRUENT ALGEBRA

DIANE G. DEMERS

For Elaine Yaw in honor of friendship

ABSTRACT. Odd (twisted) differential forms are naturally endowed with two
transversely-oriented parts: a generalized sign and magnitude. On oriented
manifolds, odd forms may be reduced to even ones. Also, W.L. Burke has
modeled odd forms with an unnatural two-part structure. Neither approach
suffices if odd forms are pulled back between manifolds with an odd difference
in dimensions. Then the new native exterior calculus and orientation congru-
ent (OC) algebra (a Clifford-like, noncommutative Jordan algebra) must be
used to resolve Burke’s dilemma: altering the natural orientation rule for either
pullback or integration. I review the work of K. Warnick et al. on electromag-
netic boundary conditions and G. Marmo et al. on the apparently inconsistent
parities of electromagnetic quantities due to space-time vs. space orientations.

Received by the editors September 18, 2008.

2000 Mathematics Subject Classification. Primary 58A10; Secondary 15A66, 15A75, 15A78,
17A15, 17D99, 20N05, 35F15, 35Q60, 51A05, 51N15.

For some relief from my duties at the East Lansing Food Coop, I thank my coworkers Lindsay
Demaray, Liz Kersjes, and Connie Perkins, nee Summers. For encouragement and financial assis-
tance, I thank DeeAnna Wooden and Elaine Yaw. For providing a copy of Marmo et al. I
thank, Daniel Henry Gottlieb. For professional kind words, interest, and encouragement, I thank
John Browne and John Masterson. Finally, for demonstrating the value of hard work, I thank an
anonymous manager.

(©2008 Diane G. Demers



DIANE G. DEMERS

CONTENTS
1. Introductiod 4
D, Directed Quantities: Their Decomposition and Representation 21
.1, The Decomposition and Representation of Even Vectord 21

B5 The O-Projective-Linear Space and Native Bracketd 31
.6, Equivalence Rules of the Three Bracketd 32
R.7. William’s Twisted Notatior 34
R.8._Some Tensor Theoretical Stuff 34
B._Oriented Differential Formd 38
T waeiug Diftereniial Pornd 3
B.2.  What Are Odd Forms1 39
B.3. The Many Names of Odd Formd 40
40
40
46
46
48
49
53
4.3, Trom Bracket Interconversions to the OC %EEEE% 53
H. An Axiom Svstem for the Orientation Con 59

2. The Nondegenemfe Quadratic Form OM 61
wmms_ﬂmwﬂﬂtd_xﬁlgebm Cl,, 62
; Modified HS Axi for the Ori on O \loc] o] 69
5.6, Other Axiom Svstemd 77

E7 D Fthe OCa Mulimlcation Tabld 79
E8._ More Multinlication Tabled 82
6 Tho Clifford L " the Or o C Noohrd 90
6.1. Sigma QOrientation Congruent Product Definition by the Sign Factor
Function 90

. o TSI e

7. Computer Software Implementations of the Orientation Congruent

Algebra 106

7.1.  The Fundamental Decomposition Theorem of the Orientation
Congruent Product 107
2.2 OC Computations in Mathematica, with ('h#o_mi 108
2.3, OC Computations in Mathematica with GrassmannAlgebrd 110

[.4._OC Computations in Clical 111

],_Inner Products, Contraction Operators, and |2]3|a ]'1;;] 118
S he Sjgniﬁ(‘an(’e of the Contraction Operators 118

R.2.  Fundamental Definitions of the Contraction Operatord 119
R.3.  Derived Expressions for the Contraction Operatord 121

0. Some Important Formulad 125




EXTERIOR CALCULUS IN THE IMAGE OF ODD FORMS 3

0.1, The Null Associator Predictoil 125
% 126
9.3, Indeterminate Counit Equation 128
netic Field Jump Conditiond 132

[10.1. Boundary Conditions with Clifford Algebrd 132
[10.2. Boundary Conditions with Odd Formd 134
0.3. Odds and Endd 134

Referenced 135
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1. INTRODUCTION

The importance of twisted tensors in physics has been neglected by
nearly everyone.
William L. Burke |34} p. xiii]

Twisted tensors, particularly as differential forms of odd type, usually can be
ignored in most applications. In fact, using the exterior calculus equivalent of the
right hand rule, they can be converted into ordinary, even forms. However, physical
insight is lost in so abandoning the essential qualities of odd forms. On the other
hand, the theoretical framework required to fully and naturally represent odd forms
is more complicated.

For those workers choosing to use odd forms, William L. Burke’s approach is an
attractive compromise. In fact, Burke’s publications [33| B4] B6] are the starting
point for this work. Sadly I relate that in 1996 the astrophysicist William Lionel
Burke died prematurely at age 55 [I99]. Had that not been so, perhaps he would
have authored a paper such as this long ago.

Burke incorporated odd forms in exterior calculus by representing them as an
ordered pair (da, 2), where da is an ordinary even form and €2 is a top-dimensional
n-form. The extended exterior calculus based on Burke’s representation of odd
forms is sufficient for most applications. But not when such forms are pulled back
by mappings between manifolds whose dimensions differ by an odd number.

To handle such mappings between manifolds with an odd difference in their
dimensions, I develop the new native exterior calculus by symbolizing both odd
and even differential forms in what I call the native representation. The native
representation and its exterior calculus are based on and extend Burke’s work.
However, the new theory fully respects the essential, internally-complementary,
directionally-bipartite, sign and magnitude nature of odd forms as it operates on
them.

That odd geometric quantities have a natural two-part complementary, sign and
magnitude directional aspect is not a new realization. In fact, illustrations of odd
multiforms or multivectors that are the graphical counterpart of the native repre-
sentation have been published as early 1924 in Schouten’s German language book
[T58, p. 22] and have continued to appear in the literature ever since.! What is
remarkable is that it has taken until now for the corresponding symbolic represen-
tation and its theoretical underpinnings to be worked out.

For an elementary example of the power of the native exterior calculus, I treat
the discontinuous electromagnetic boundary conditions (the so-called jump condi-
tions) produced by a surface that is charged or carrying a current. About ten years
ago this situation puzzled both Burke [36], [T95, p. 332, fn.], and another group
of authors Warnick, Selfridge, and Arnold [T95]. A researcher who uses Burke’s
exterior calculus to analyze the jump conditions is forced to make one of two ad
hod modifications: alter the natural orientation rule either for pullback or for inte-
gration. Burke chose the first modification, while Warnick et al. chose the second.
However, neither is necessary with the native exterior calculus.

Here are some citations that contain pictures of odd forms in their native representation:
the paper of Schouten and van Dantzig [164]; Schouten’s books [I61], p. 28] and [162, pp. 31-33,
55]; Bossavit’s on-line book [23] p. 72]; Jancewicz’s papers [105} [T06, [T0Y]; the book by Hehl and
Obukhov [89, p. 145]; and the papers coauthored with Hehl [ [G0].
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The same shortcomings of Burke’s extension of exterior calculus to odd forms also
seem to afflict the other methods of representing and manipulating odd differential
forms and multivectors. I say this because I know of no other theory that completely
captures the inherent two-part, sign and magnitude, self-complementary direction
of odd quantities. A hint of how widespread the suspected general situation might
be is found in the next example from special relativity.

Although the electromagnetic dilemma reported by Warnick et al. involves a
mapping from a manifold of dimension 3 (ordinary space that contains electromag-
netic fields) to a manifold of dimension 2 (a surface that carries an electrical charge
or current), its cause—a map with an odd dimensional change—is the same as that
of the conundrum that Marmo et al. [I28, [[29] attempted to resolve with the exte-
rior calculus extended in a common, but not very revealing, way to odd differential
forms. These authors analyzed the apparent shift in parities of electromagnetic
fields that occurs when 4-dimensional spacetime is split by an observer into one
time and three space dimensions. I cannot do it here, but hope to apply the native
exterior calculus to this problem in a future publication.

Burke’s (da, ) ordered pair expression for odd forms is cognate to what is called
in this paper the extremum representation for both odd and even forms. In a draft
paper [36] which may have been his last publication, Burke described a new rep-
resentation for odd forms. An intermediate expression in his description, which,
unfortunately, Burke never exploited, inspired another representation of odd and
even forms presented in this paper, the correlated representation. Interrelating the
exterior products of odd and even forms in the extremum and correlated repre-
sentations leads to the new orientation congruent algebra (or OC algebra). The
orientation congruent algebra is required to form the exterior algebras and calculi
of these two representations and also the native one.

By abstracting from our first explorations of the orientation congruent algebra,
we formulate an axiom system for it that is similar to the axiom system for Clifford
algebra based on generators and relations. This type of axiom system is common
in the Clifford algebra literature under the name for Clifford algebra interpreted
geometrically, geometric algebra.

The orientation congruent algebra is also a Clifford-like algebra. Clifford-likeness
may be defined by considering products of the basis multivectors that are derived
from an orthonormal set of basis vectors. Then the Clifford-likeness of some algebra
means that the product of two given basis multivectors in that algebra is same as
their Clifford product up to sign.

An explicit Clifford-like formula for the OC product is provided later. This
formula determines the sign factor, o = +1, that, when applied to the Clifford
product, converts it to the orientation congruent product. The sign factor may be
expressed as a function of the degrees (or grades in Clifford algebra jargon) of the
multiplier and multiplicand of a given orientation congruent product.

In practical application, humans or computer programs that can calculate the
Clifford product can also calculate the orientation congruent product by using the
sign factor. More importantly, in theoretical application, by reducing the abstract
algebraic theorems of the orientation congruent algebra to the ordinary algebraic
manipulations used to calculate the sign factor combined with the known theorems
of Clifford algebra, the Clifford-like formula for the OC product becomes the vehicle
for the development of most of this work.
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From the perspective of abstract algebra, the OC algebra is one of a large class
of nonassociative algebras known as noncommutative Jordan algebras. In addition,
the Cayley or multiplication table of products of basis multivectors (as defined in
the previous paragraph) and their negatives defines a quasigroup with identity (also
known as a loop) which appears to have unique properties. However, a thorough
investigation of the algebraic properties of the orientation congruent algebra and
its derived loop will have to wait until another publication.

Amazingly, this work is connected to special relativity in yet another way than
the one mentioned above as analyzed by Marmo et al. [I28] [[29]. Namely, in
the orientation congruent algebra for a Euclidean 3-dimensional space, denoted
OCs, the three elements formed from the orientation congruent products of two
orthonormal basis vectors are isomorphic to the so called hyperbolic quaternions
of Alexander MacFarlane (see [200]). This connection is also related to Abraham
A. Ungar’s approach to special relativity and hyperbolic geometry with gyrogroups
expounded in his books [IR0, [I8T] (and many papers, not cited here). However,
these connections cannot be pursued further at this time.

INTENDED AUDIENCE. In this paper I touch on topics from diverse mathematical
specialties, abstract and applied: differential geometry, oriented and unoriented
projective geometry, groups and loops, associative and nonassociative algebras,
Clifford and geometric algebra, and electromagnetic theory. Some results from
these diverse areas may be well known to specialists in any one of these fields,
but all of them are unlikely to be known to any single reader, especially a reader
in my intended audience—those physicists and engineers using applied differential
geometry, but who, typically, are not familiar with odd differential forms. Therefore,
specialists be warned: background material is frequently discussed in more detail
than would be palatable to you.

GENERAL PREREQUISITES. The general background for this paper is found in
the following works: for applied differential geometry, the publications of William
Burke [33, B4, 36]; for Clifford and geometric algebra, the book by Pertti Lounesto
[123], the tome of David Hestenes and Garret Sobezyk [07], and the excellent syn-
opsis of Richard E. Harke [84]. Drawings of all the three-dimensional odd and
even quantities (multiforms or multivectors) and examples of their use to represent
specific physical quantities are found in Bernard Jancewicz’s papers [L05] [T06].

William Burke’s publications [33] B4, B6] are the starting point for this work.
First, in a 1983 paper [33], then, in a 1985 textbook [34], he presented an excel-
lent first pass at adapting Cartan’s exterior calculus to odd (or twisted) differential
forms. His technique is based on the above mentioned (da, ) ordered pair expres-
sion for odd forms, where da is an ordinary even form and €2 is a top-dimensional
n-form. This expression and Burke’s calculation rules for the resulting modified
exterior calculus are essentially equivalent to this paper’s extremum representation
and extremum exterior calculus of both odd and even differential forms.

Later, on the first page of a draft paper [36], Burke describes his new, self-named
William’s Twisted Notation for odd forms as “what I have found to be the best
and simplest notation for twisted forms.” Then, on pages 56, he explains how to
transform the (da, ) representation into his Twisted Notation. It is the penulti-
mate expression in this transformation (unfortunately, not exploited by Burke) that
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opens the door to all the results presented here. This expression directly inspired
this paper’s correlated representation and its correlated exterior calculus of both
odd and even differential forms.

Experience shows that Burke’s techniques based on expressing odd forms as the
ordered pair (da, Q) are almost always sufficient. However, they fail when odd
differential forms are mapped (pulled back) between manifolds whose dimensions
differ by an odd integer. This situation requires, not the Burkean adaptation of
Cartan’s calculus, but this paper’s new native representation and native exterior
calculus of both odd and even differential forms.?

An elementary example involving such a map is the formulation of the jump
conditions of the odd electric flux density 2-form D and the odd magnetic field
intensity 1-form H due to surface sources. Burke treated it repeatedly: first, in his
1983 paper [33]; then, in his 1985 textbook [34]; and finally, in his 1995 draft paper
[36], one of his last works before his premature death.?

Burke’s methods have also been used by Warnick, Selfridge and Arnold in their
1995 paper [195] on the electromagnetic jump conditions. This paper introduced
their novel boundary projection operator.* However, the contribution of Warnick et
al. that is relevant here is their clear, acute dissection of the inadequacies of Burke’s
approach to the jump conditions.

In this electromagnetic example, the Cartan-Burke analyst, attempting to main-
tain the commutation of exterior differentiation with pullback, faces the dilemma
of altering the natural orientation rule for either integration or for pullback. Al-
though it would be applied to only the pullback from 3-space to a surface, the
first choice initiates an undesirable policy of ad hoc change. On the other hand,
the second choice awkwardly requires that forms of different degrees be treated
differently—violating the spirit of Cartan. Yet this dilemma is unnecessary once
the Cartan-Burke exterior derivative is generalized to the native exterior derivative.

Using the native exterior calculus we naturally resolve the above dilemma that
confronted first Burke and later Warnick, Selfridge, and Arnold (and also again
Burke whose private communication they cite [T95, p. 332, fn.]) in their attempt
to formulate these electromagnetic field jump conditions. In our analysis at the
end of this paper, unlike Burke, we do not modify the natural orientation rule for
pullback to a surface, and unlike Warnick, Selfridge, and Arnold, we do not modify
the natural orientation rule for integration.

Although the electromagnetic dilemma reported by Warnick et al. involves a
mapping from a manifold of dimension 3 (ordinary space that contains electromag-
netic fields) to a manifold of dimension 2 (a surface that carries an electrical charge
or current), its cause—a map with an odd dimensional change—is the same as that
of the conundrum that Marmo et al. [I28, 29] attempted to resolve with the exte-
rior calculus extended in a common, but not very revealing, way to odd differential
forms. These authors analyzed the apparent shift in parities of electromagnetic

2The same shortcoming would seem to afflict the other methods of representing and manipu-
lating odd differential forms. Although I have not verified it, I say this because I know of no other
theory that completely captures the essential internally-complementary, directionally-bipartite,
sign and magnitude nature of odd quantities.

3Unfortunately7 William Lionel Burke died at age 55 in 1996 from a cervical fracture that he
suffered in an automobile accident. See his Wikipedia entry for more information.

4Since the fall of 1995, these pioneering authors have been teaching undergraduate electrical
engineering students using a curriculum based on differential forms [I96], p. 54].
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fields that occurs when 4-dimensional spacetime is split by an observer into one
time and three space dimensions. I cannot do it here, but hope to apply the native
exterior calculus to this problem in a future publication.

Later in this paper we develop the three above mentioned types of symbolic
representations. They may be used not only for odd forms, but also for even forms,
and odd and even multivectors. These representations are actually equivalence
classes of ordered pairs with each part of the pair expressed, in general, as a sum of
forms or multivectors. Recapitulating, they are the extremum (short for unbound
extremum), the correlated (short for bound correlated), and the native (or unbound
correlated) representations.

We may briefly characterize these three representations as follows. As mentioned
above, the extremum representation is equivalent to Burke’s ordered pair represen-
tation (da, 2) where da is an ordinary even differential form and € is a top-dimen-
sional n-form or wvolume form. It also appears to be essentially equivalent to all
previously known representations of odd quantities. The correlated representation
is an intermediate form that is helpful to the development. It is nearly equivalent
to the native representation. The native representation is the natural representa-
tion for odd forms, but it also accommodates even forms. It totally captures the
inherent, self-complementary, two-part, sign and magnitude direction of odd forms.
Both the extremum and correlated representations are of limited validity, but the
native representation is generally valid.

Later in this work, we meet the orientation congruent (OC) algebra. It necessarily
appears when we construct the exterior algebras of the extremum and correlated
representations, and relate the two. However, it is essential throughout the theory.
By abstracting from our first explorations of the OC algebra, we formulate an axiom
system similar to the one for Clifford algebra based on generators and relations that
is common in the literature.

The orientation congruent algebra is also a Clifford-like algebra. Clifford-likeness
may be defined by considering products of the basis multivectors that are derived
from an orthonormal set of basis vectors. Then the Clifford-likeness of some algebra
means that the product of two given basis multivectors in that algebra is same as
their Clifford product up to sign.

An explicit Clifford-like formula for the OC product is provided later. This
formula determines the sign factor (£1) that, when applied to the Clifford product,
converts it to the orientation congruent product. The sign factor is a function of
the degrees (or grades in Clifford algebra jargon) of the multiplier and multiplicand
of a given product.

In practical application, humans or computer programs that can calculate the
Clifford product can also calculate the orientation congruent product by using the
sign factor. More importantly, in theoretical application, by reducing the abstract
algebraic theorems of the orientation congruent algebra to the ordinary algebraic
manipulations used to calculate the sign factor combined with the known theorems
of Clifford algebra, the Clifford-like formula for the OC product becomes the vehicle
for the development of most of this work.

From the perspective of abstract algebra, the OC algebra is one of a large class
of nonassociative algebras known as noncommutative Jordan algebras. In addition,
the Cayley or multiplication table of products of basis multivectors (as defined in
the previous paragraph) and their negatives defines a quasigroup with identity (also
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known as a loop) which appears to have unique properties. However, a thorough
investigation of the algebraic properties of the orientation congruent algebra and
its derived loop will have to wait until another publication.

Amazingly, this work is connected to special relativity in yet another way than
the one mentioned above as analyzed by Marmo et al. [I28] [29]. Namely, in the
orientation congruent algebra for a Fuclidean 2-dimensional space, denoted OCs,
any orthonormal basis and its products is a set of elements isomorphic to the so
called hyperbolic quaternions of Alexander MacFarlane (see [200]). This connection
is related to Abraham A. Ungar’s approach to special relativity and hyperbolic
geometry with gyrogroups expounded in his books [IR0, [8T] (and many papers,
not cited here). However, these connections cannot be pursued further at this time.

Some of the symbolic representations developed in this paper have appeared in
various publications of other authors as cognates that are limited to odd forms and
multivectors. However, I do not know of any earlier systematic development of
all three representations for both odd and even quantities. Furthermore, nowhere
else have I found the correlated and native representations exploited as the basis
for an exterior algebra or calculus as is done here. Even so, it is remarkable that
illustrations of odd quantities that are the graphical counterparts of the native
representation have been published as early 1924 in Schouten’s German language
book [I58) p. 22] and have continued to appear in the literature ever since.

GENERAL PREREQUISITES. Quite enough new material is introduced in this
paper. Therefore, to keep it to a practical length, I assume the reader has a certain
background. More or less, you should be familiar with odd differential forms as
they appear in the publications of William Burke [B3, B4, B6], and with Clifford
algebra (or geometric algebra) as it is treated in the book by Pertti Lounesto [T23]
and the excellent synopsis of Richard E. Harke [84]. More physical motivation for
odd quantities (multiforms or multivectors) can be found in Bernard Jancewicz’s

papers [105} [T06].

oKk Rk ok kK kKRR R KKk K oK

Odd (or twisted) differential forms (and multivectors) are rather easy to under-
stand and visualize. Although, in the following discussion it is best to consider only
the simple ones, that is, those that may be represented by a product of one-forms.
Then, unlike even (or ordinary) differential forms (and multivectors) odd differen-
tial forms naturally have two parts both of which have directional properties. One
of the “directions” of such an odd form may be associated with an ordinary form
if we keep the magnitude or measuring property of the associated form, that is,
its ability to return a number when acting on a multivector of the same degree,
but ignore the positive or negative sign of that number. Graphically, it may be
represented by a differential form stripped of the arrows that indicate the sense of
its direction.

It is the other direction that determines the sign when an odd form contracts
with an odd multivector. It may also be represented by a differential form, but now
one whose magnitude or measuring property is ignored—only the sign of the result
of its contraction with a multivector is relevant. Graphically, it may be represented
by a multivector that is transverse to the other magnitude-determining part of the
odd form, that is, one whose contraction with other part of the odd form is zero.

Odd (or twisted) differential forms remain unknown to many mathematicians,
physicists, and engineers—even some familiar with differential geometry. However,
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any researcher deeply interested in electrodynamics eventually discovers these two
truths: Odd differential forms arise naturally alongside the ordinary even ones.
Both are necessary to fully model the field quantities of this and other physical
theories.

If odd forms are so innate and essential in physics why does this ignorance con-
tinue? The status quo remains since a full and direct understanding of the property
that describes whether a differential form is odd or even—its orientation—can ei-
ther be sometimes ignored or be altogether avoided with makeshift techniques.
Thus, absent or garbled presentations of odd quantities sidestep the more compli-
cated theoretical machinery necessary for their full and direct analysis. In spite
of this criticism, any approach to orientation taken within some discipline is, of
course, broadly shaped by the associated forces and has merit within that context.

Various treatments are found in traditional physics and engineering, pure math-
ematics, and applied mathematics. Let us quickly review some common approaches
from these fields ending with the one which is the root of this paper.

The traditional physics and engineering treatment of odd quantities uses the
Gibbs-Heaviside vector calculus or indexed tensor notation. In vector calculus the
orientation of an odd vector, such as that representing the magnetic field intensity,
is disguised by converting it to an axial vector, which in this example would be H.
Worse, because the vector cross product is defined by assigning a reference orienta-
tion to ordinary three-dimensional space, the Gibbs-Heaviside vector calculus also
converts even bivectors, such as that representing the magnetic flux density, to an
axial vector, which in this example would be B. In tensor notation the oddness
of a quantity is almost completely obscured by index notation and manifests itself
essentially in the transformational properties of the tensorial representation.

Physicists and engineers attempt to compensate for the deficiencies of vector
calculus by adopting labels such as azial vector and pseudovector. They attempt to
cope with those of tensor notation with a special set of rules for transforming odd
quantities together with labels such as pseudotensor, bivector density, or W-vector,
or with modifications of the kernel (the symbol to which the indices are attached).

In pure mathematics, orientation usually only comes up in topological discussions
as a certain property of a manifold: its orientability or nonorientability. Twisting
by the line bundle. This is a powerful approach, however it is not as intuitive as
the one provided by some authors writing in applied differential geometry. That is
the starting point for this paper.

In applied mathematics, some more modern physics and engineering practitioners
of differential geometry come closer to fully and directly treating the orientation
of an odd quantities by using a symbolic representation that, at least, makes their
bipartite directional nature manifest. For odd differential forms this is the ordered
pair representation (o,€)’). Here « is an ordinary even form, while ' = +Q is a
choice of one of the two oppositely-oriented, and thus oppositely-signed, versions
the so-called volume element or volume form, the top-degree n-form which is the
exterior product of all n basis 1-forms.

This (a, Q') ordered pair representation of an odd form is cognate to what I call
the (unbound) extremum representation. It is extremum because the degree of €
is n, the mazimum possible for an n-dimensional manifold. It is unbound because
the sense of the orientation of € is not fized and is allowed to vary between the
opposites represented by © and —€) (with a corresponding change in the sign of «).
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Instances of cognates to the extremum representation of an odd form occur in
various publications. The differential geometric representation of an odd form as
the ordered pair (o, Q) is found in Burke’s book [34, pp. 188 f.] and Bossavit’s
on-line book [23] pp. 67 f.] and compendium [24] pp. 12 f.] (where it is written as
{a, Q}). The extremum representation is much more similar to the version («, {Q})
which appears in Burke’s draft paper [36, pp. 4 f.] than it is to the previous two
examples. This is because there Burke explicitly defines the use of curly brackets
{ } in the expression {2} to mean the equivalence class {2 | ' = kQ for k > 0}.
Later in this paper, we will need to enlarge this equivalence class by adopting a
more general form of its defining property.

This symbolic representation, along with the others discussed in this paper,
has a unique pictorial counterpart. Some of these pictorial representations have
previously appeared in the literature. I have found images of the extremum repre-
sentation of odd quantities, but only in Burk’s book [34], pp. 188-190].

As good as it is, an extremum representation is still not natural for an odd form,
but the native representation is. In the native representation of an odd form the
two parts of the ordered pair have complementary degrees, that is, degrees that sum
to n, the maximum degree of a differential form. In systematic taxonomy the native
representation is called the unbound correlated representation. This representation
is correlated because the degrees of the two parts in it are inversely related. 1t is
unbound because it does not depend on a specified fixed reference orientation as 2
or —(.

The unbound correlated representation of odd forms is cognate to an expression
described by Burke in his explanation of his self-named “William’s twisted notation”
for odd forms. This description occurs in his on-line draft paper [36] pp. 5 f.] as the
penultimate step of the conversion of the («, {Q}) representation of an odd form
to William’s twisted notation. Unfortunately, his analysis runs through it without
recognizing its full significance. It is this expression, only an intermediate step to
Burke, which was the crucial inspiration for this work.

While Burke’s paper contains the only instance that I have found of a sym-
bolic cognate of the native, or unbound correlated, representation of an odd form,
graphical versions of it are common among the works of some authors. The earliest
illustrations of the native representation of odd quantities that I have found are in
Schouten’s works: the German language book [I58 p. 22], the paper jointly au-
thored with van Dantzig [164], as well as Schouten’s subsequent books [I61] p. 28]
and [162] pp. 31-33, 55]. They are also found in Burke’s book [34] pp. 185-198,
276-282, et al.] and his papers [33], BB, B6], as well as Bossavit’s on-line book [23]
p. 72] and Jancewicz’s papers [L05, [T06] [T0g].

Later in this paper we discuss altogether three types of symbolic representations
of not only odd forms, but also even forms, and odd and even multivectors. These
representations are equivalence classes of ordered pairs with each part of the pair
expressed, in general, as a sum of forms or multivectors.

As just reviewed, some of these representations appear in various publications as
cognates that are limited to odd forms and multivectors. However, I do not know
of any earlier systematic development of all three representations for both odd
and even quantities. Furthermore, nowhere else have I found these representations
exploited as the basis for an exterior algebra or an exterior calculus as is done here.
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Later in this work, when constructing the exterior algebra of the (bound) corre-
lated representation we are naturally and necessarily lead to the orientation con-
gruent (OC) algebra. The orientation congruent algebra is most easily defined, as
we do in this paper, by altering the generators and relations definition of Clifford
algebra.

The orientation congruent algebra is a Clifford-like algebra. Clifford-likeness may
be defined by considering products of the basis multivectors that are derived from
an orthonormal set of basis vectors. Then the Clifford-likeness of some algebra
means that the product of two given basis multivectors in that algebra is same
as their Clifford product up to sign. In practice, humans or computer programs
that can calculate the Clifford product can also calculate the orientation congruent
product by using the explicit Clifford-like formula for the OC product which is
provided later.

In addition to its Clifford-like status, the OC algebra is also one of a large class
of nonassociative algebras known as noncommutative Jordan algebras. The Cayley
or multiplication table of products of basis multivectors (as defined in the previ-
ous paragraph) and their negatives defines a loop which appears to have unique
properties. However, a thorough investigation of the algebraic properties of the
orientation congruent algebra will have to wait until another publication.

oKk ok ok ok KR KRRk KRk KKK
MOSTLY OR ALL DISCARDABLE STUFF

The OC contraction is key to a theory of differenced pullbacks that allows them
to both commute with exterior differentiation and maintain sign consistency when
applied across forms of all degrees. Thus, we naturally resolve the dilemma that
confronted Warnick, Selfridge, and Arnold in their attempt to formulate of these
electromagnetic field jump conditions. Even after their reported consultation [T95]
p. 332, fn.] with Burke, they could manage it only by an arbitrary, ad hoc modifi-
cation of a standard result.

Warnick, Selfridge, and Arnold introduced the boundary projection operator
in their 1994 paper [[95] by defining it in terms of what they called the interior
product of differential forms. Their interior product is also known among Clifford
algebraists as the Clifford contraction.

We provide it the end of this paper, using the contraction operator of the ori-
entation congruent algebra. The OC contraction is key to a theory of differenced
pullbacks that allows them to both commute with exterior differentiation and main-
tain sign consistency when applied across forms of all degrees. Thus, we naturally
resolve the dilemma that confronted Warnick, Selfridge, and Arnold in their at-
tempt to formulate of these electromagnetic field jump conditions. Even after their
reported consultation [T95, p. 332, fn.] with Burke, they could manage it only by
an arbitrary, ad hoc modification of a standard result.

At the end, we apply our work to a problem encountered by Warnick, Selfridge
and Arnold [T95] when using their boundary projection operator method® in electro-
dynamics. In their paper [I95 p. 332, fn.] they consult Burke who is also unable to
resolve the dilemma they face. Warnick et al. expediently choose to modify Burke’s
rule n A {(as, Qs)} = {(a, )} B4 pp. 192 f.]. Burke gives this formula as necessary
for pullback to commute with the exterior derivative operator d. The version they
use, {(as, Q) An = {(a,Q)}, does not commute with d, but it does allow them
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to write the boundary conditions consistently with the same sign for both the odd
1-form D and the odd 2-form H.

In this work I present the ideal treatment of odd quantities by using a symbol-
ism that fully respects their inherent, two-part, complementary orientation. Using
the bound correlated representation 1 provide a new formulation of the exterior al-
gebra and calculus that treats both odd and even differential forms in a uniform
way. These developments require the definition of the orientation congruent alge-
bra and its associated contraction operator. The orientation congruent algebra is
easily defined by altering the generators and relations definition of Clifford algebra.
The orientation congruent algebra is a Clifford-like algebra that is also a member
of a large class of nonassociative algebras, the noncommutative Jordan algebras.
However, a thorough investigation of the algebraic properties of the orientation
congruent algebra will have to wait until another publication.

The OC contraction operator is the key to a theory of differenced pullbacks that
allows them to both commute with exterior differentiation and maintain sign con-
sistency when applied across forms of all degrees. In later work I plan to apply
the OC contraction to a related sign inconsistency that occurs in the derivation of
the parities of the space+time, (34 1)-dimensional, electromagnetic field quantities
when they are split from their spacetime, 4-dimensional, counterparts [128].

I do not know how much computational advantage is provided by adopting the
concepts of this paper. For that reason this work may receive little attention from
engineers who are not attuned to conceptual unity and simplicity, or, to use a stuffy
word, elegance, but instead are driven by the need to analyze and design physical
systems. For them, as pointed out by Bossavit [23l p. 7], numerical results and
computational efficiency are paramount.

Theoretical physicists may be more interested, especially if, as I believe it will,
the formalism presented here resolves a particular controversy in electrodynamics.
This problem stems from the inconsistency between the parities usually assigned
to electromagnetic quantities within the continuum of 4-dimensional spacetime and
the parities usually assigned to them in an observer-split (34 1)-dimensional space+
time. It was analyzed by Marmo, Parasecoli, and Tulczyjew in Reference [T28] and
recapitulated by Marmo and Tulczyjew in Reference [129],

Elsewhere, in relativity theory, there is an apparent inconsistency between the
parity of the fundamental electromagnetic quantities as formulated in the 4-dimen-
sional spacetime continuum and as formulated in the (3 + 1)-dimensional space+
time split of an observer. This is discussed by Marmo, Parasecoli, and Tulczyjew in
Reference [128] and recapitulated by Marmo and Tulczyjew in Reference [I29]. The
first paper is reviewed as suffering from “some unjustified polemics” by Schmidt
in Zentralblatt [TA7]). This controversy, as well, could be resolved with these new
techniques. Unfortunately, I do not have time to do it here.

Also of interest to physicists and physically-minded mathematicians may be the
fact that the orientation congruent algebra OC3 properly contains the hyperbolic
quaternions of Alexander MacFarlane []. MacFarlane’s nonassociative algebra of

5This method has also been exploited by R. Bhakthavathsalam as mentioned on his webpage

9.
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hyperbolic quaternions can be used to calculate the relative velocities of reference
frames in relativity theory. The orientation congruent algebra’s role in this must be
related to Ungar’s use of gyrogroups in relativity theory and hyperbolic geometry
[J, but T have not yet had time to elucidate it.

Mathematicians may be most curious about this last point as well as the orien-
tation congruent algebra’s relationship to the nonassociative differential geometry
of Sabinin et al. []. The relationship of this nonassociative differential geometry
has already been worked out for gyrogroups []. In addition, further combinatorial
work is required to define the standard basis of orientation congruent algebras of
arbitrary finite dimensions. With the general standard basis nailed down it appears
possible to define the meet and join of oriented flats in oriented projective geometry
of arbitrary dimensions.

sk kKRR KRR kKR KoK

Essentially this means that the signs of the terms in the sum of multivectors that
is OC product of two given elements may differ from the signs of the corresponding
terms in the sum of multivectors that is the Clifford product of the same two
elements.

By Clifford-like we mean that the signs of the terms in the OC product of two
given elements may differ from those of the terms in the Clifford product of the same
two elements. Both products, however, contain the same set of terms considered
independently of sign. In addition to its Clifford-like status, the OC algebra is also
one of a large class of nonassociative algebras known as noncommutative Jordan
algebras.

Nor do I know of the prior presentation of this paper’s exterior algebra and
calculus of odd and even forms both represented in the bound correlated format.

Here the word bracket does not signify an inner product. Instead, it reflects that
the shape of the brackets indicates whether the ordered pair they contain represents
a correlated or extremum equivalence class. Bound brackets are bound to one of the
two possible choices of oppositely-oriented volume forms, while unbound brackets
do not depend on that arbitrary choice. The binding of a bracket, whether it is
bound or unbound, is indicated by the punctuation separating the two parts of the
bracket.

The unbound correlated representation of odd quantities is physically and con-
ceptually natural. Therefore, I give it the special designation native.

The unbound extremum bracket representation of odd forms is cognate to the
differential geometric representation of an odd form as the ordered pair (a, ()
found in Burke’s book [34] pp. 188 f.] and Bossavit’s on-line book [23] pp. 67 f.] and
compendium [24] pp. 12 £.] (where it is written as {a, Q}). It is even more related to
the version («, {Q2}) which appears in Burke’s draft paper [36l pp. 4 f.]. The bound
correlated bracket representation of odd forms is cognate to an expression described
by Burke in his explanation of his self-named “William’s twisted notation” for odd
forms. This description occurs in Reference [B6, pp. 5 f.] as the penultimate step of
the conversion of the (o, {€2}) representation of an odd form to William’s twisted
notation.

Corresponding to each of these symbolic types is a unique pictorial represen-
tation, some of which have previously appeared in the literature. The earliest
illustrations of the native representation of odd quantities I have found are found
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in Schouten’s works: the German language book [I68, p. 22], the paper jointly au-
thored with van Dantzig [[64], as well as Schouten’s subsequent books [T61l p. 28]
and [162, pp. 31-33, 55]. The only images of the unbound extremum representation
of odd quantities that T have found are in Burk’s book [34] pp. 188-190).

Some of the four pictorial representations of odd p-forms and p-vectors presented
here, specifically, the unbound correlated, or native, and the unbound extremum
ones, do appear in other author’s works. On the symbolic side the unbound ex-
tremum representation of odd forms is directly equivalent to the usual differential
geometric representation of an odd form as the ordered pair (a, ). However, I do
not know of any simultaneous development before this paper of all four symbolic
and pictorial representations for both odd and even quantities. Nor do I know of
the prior presentation of this paper’s exterior algebra and calculus of odd and even
forms both represented in the bound correlated format.

oKk ok ok sk ok sk ok KRk Rk kK SR KR Kk KRRk K

My work, of course, has its this paper does have its precedents.

However, one immediate inspiration for this work is Burke’s self-named “William’s
twisted notation.” The native symbolic representation of odd forms is implicit in
the penultimate step of his explanation of this notation. Burke’s explanation begins
with the usual differential geometric representation of an odd form as («,€2) and
step-by-step transforms it into William’s twisted notation. Understandably, taking
the last step of this transformation was essential for his purposes, but in so doing
he does not recognize the significance of his penultimate step.

Although the native representation of odd forms has not previously been devel-
oped in a symbolic form, it has appeared in the works of Schouten in a graphical
form.

Although the symbolic native representation of odd forms has not been previously
developed, their graphical native representations have illustrated Schouten’s works.
Schouten appears to be the first to publish such illustrations perhaps as early as
1938 in a German language paper []. They definitely appear in a later English
paper jointly authored with van Dantzig [164], as well as Schouten’s subsequent
books [163]

However, the key idea of a distinguishing internally and externally oriented geo-
metric objects seems to first appear in Veblen and Whitehead’s Foundations of
Differential Geometry [, pp. 55 f.] during a discussion of k-cells.

The differential-geometric treatment of orientation just sketched, has been ap-
plied to physics by William L. Burke in References [33] pp. 188 f.] and [34, 36, and,
has been applied to electrical engineering by Alain Bossavit in References [23 pp.
67-73] and [24] pp. 12 f].

KRR SRRk KK SR KRk SRR kK ok K

Ignorance or misunderstanding of the orientation of physical quantities also leads
to unnecessary continuing controversy among engineers and physicists over the
nature and classification of electromagnetic quantities. An example is found in the
papers of Fournet [73] [74]. Although, as Roche explains in Reference [I47], various
subtle points of physical interpretation contribute to this confusion, it is, in no
small part, due simply to not realizing that half the directed physical quantities
of a theory—the odd ones—have a bipartite directional nature. The expression,
traditionally favored by physicists, of quantities in tensor analytic form as a single
set of components allowing certain transformations only hinders our discernment of
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the directional properties of physical quantities. This is evidenced in another paper
[[48, p. 194] in which Roche quotes Sommerfeld and Weyl. In both quotations
the magnetic intensity H is treated as a planar quantity when it is actually an
odd quantity with both a planar direction, its 2-form-derived part, and a linear
direction, its 1-form-derived part.

In the book Classical Electrodynamics [T00, pp. 65 f.], Ingarden and Jamiotkowski
discuss the concepts of intensity quantities and magnitude quantities. The classifi-
cation of the field quantities F, D, B, and H of electrodynamics in their Table 1
clearly shows that the intensity quantities £ and B correspond to even quantities
and the magnitude quantities D and H correspond to odd ones. As mentioned
by these authors this classification supports the Lorentz-Abraham classification
that groups first £ and B, and then D and H as analogous fields. Ingarden and
Jamiotkowski also discuss the competing Heaviside-Hertz analogy of first F and H,
and then D and B. They go on to say that “...all these similarities are of limited
importance.”

My initial motivation for this work was to symbolically mimic the geometric
representations of odd (or twisted) differential forms and to construct the exterior
algebra of both odd and even (ordinary) differential forms expressed in those rep-
resentations. The current literature—excluding tensors, abstract or indexed, since
they are not pure and simple differential forms—contains only one symbolic and
two geometric representations of odd forms.

Actually, one other symbolic representation exists. William L. Burke was an avid
popularizer of both odd and even differential forms and their glorious pictures. His
draft paper [B6, pp. 5 f.] introduced what he called William’s twisted notation for
odd differential forms. The very beginning of my inquiry was the attempt to do
exterior algebra in a modified form of William’s twisted notation.

We complete that list to a total of six representations: three geometric and
their corresponding symbolic forms. One of the new representations corresponds
more naturally to the physical origin of odd forms. They all treat both even and
odd differential forms in a completely parallel way. Along the way we develop an
apparently . We formulate an exterior calculus and apply it to the dilemma of .

We symbolically mimic the geometric representations of odd (or twisted) differ-
ential forms. The current literature contains only one symbolic and two geometric
representations of odd forms. We complete the list to a total of three pairs of geo-
metric representations and their symbolic analogs. These pairs treat odd and even
(ordinary) differential forms uniformly. The newest one corresponds more naturally
to the physical origin of odd forms. We construct the exterior algebra and calcu-
lus of odd and even differential forms in these representations. For this, we define
a new, Clifford-like, noncommutative Jordan algebra and dub it the orientation
congruent (OC) algebra. Our OC contraction operator solves the dilemma of ABC
over abandoning the standard pullback or treating differential forms of all degrees
uniformly.

We symbolically mimic the geometric representations of odd (or twisted) differ-
ential forms, treating the odd and even (ordinary) ones uniformly, and complete
their known representations to three geometric-symbolic pairs. The newest one
more naturally parallels the physical origin of odd forms. We construct the exterior
algebra and calculus of forms in these representations. For this, we define a new,
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Clifford-like, noncommutative Jordan algebra, dubbing it the orientation congru-
ent (OC) algebra. The OC contraction operator solves the dilemma of Warnick
et al. over abandoning the standard pullback or treating differential forms of all
degrees uniformly when finding the jump discontinuities of the electromagnetic D
and H.

KoKk SRRk KRR SRR K SRRk SRR kK ok K

First, let us establish some useful terminology. Bernard Jancewicz, in his papers
[T0RL [T06], generalized the meaning of the word directed, used earlier in a paper of
Lounesto, Mikkola, and Vierros [IT9], by employing it in the blanket term directed
quantities to embrace all the following: even and odd multivectors, and even and
odd multiforms. We also use it that way in here. The word orientation is rather
overworked in this paper, occurring in many senses and contexts. Therefore, let us
call that property of a directed quantity describing whether its orientation is even
or odd the orientation parity (or o-parity) of that quantity.

This is a mathematical study of the of the odd (twisted) differential forms that
are used to model the quantities of the classical field theories of physics. We consider
the following questions:

What are some geometric representations of these odd forms?

In particular, what is their natural geometric image?

What abstract spaces correspond to these geometric images?

How are exterior (Grassmann) algebras defined for these spaces?

What nonassociative algebra is required to define these exterior algebras?
What exterior calculus is derived from one of these exterior algebras?
What are the physical applications, if any, of this exterior calculus?

My passion for diff’rential forms
Defies all traditional norms;
It may make you queasy,
But it’s really quite easy;

It ought to be taught in the dorms.
Zbigniew Peradzynski [[38], p. 145]

As Burke [34] pp. 176, 268 fI., 285 ff.] and Tucker [T79]) point out, many, but not
all aspects of the physical quantities and properties described by field theories can
be expressed in the coordinate free language of exterior calculus and differential
forms. In wide areas of physics and engineering the calculus of exterior differen-
tial forms has proved an eflicient, versatile tool for formulating and analyzing the
topological and differential geometric properties of physical theories. Some exam-
ples are gravitation [I33], electromagnetism [23] B8, B2, [[T4], and fluid dynamics
IT37, (138, 126,

However, it is Maxwell’s electromagnetic theory, above all other fields of applica-
tion, that mates with the exterior calculus as hand to glove. Its unique combination
of simplicity and comprehensiveness makes electrodynamics the physical theory par
excellence for exemplifying the exterior calculus.

In 1963 we find evidence of the particular ease of expressing the laws of electrody-
namics with differential forms. It occurs in the pioneering popularizing text, Harley
Flanders’ Differential Forms with Applications to the Physical Science [[2]. Elec-
tromagnetic fields are the subject, on page 16, of the book’s first physical example.
Then, by page 44, “Maxwell’s Field Equations” is the first full section involving a
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physical application. Later in 1985, Burke wrote in Applied Differential Geometry

B4, p. 272 ]:

There is a natural match between electrodynamics and differential
forms, and they do more for electrodynamics than say, for elasticity
or fluid dynamics.

We exploit electrodynamics for examples in this paper. In the last Section we dis-
cuss an application of the correlated bracket exterior calculus to Maxwell’s classical
theory of electromagnetism.

KRR kKR KRR KRR K kK

We need differential forms so that, in a nonmetrical setting, we can combine one
directed quantity, such as a vector, with a second one in a measurement operation
(evaluation) to give a signed number. In this example, the second directed quantity
is a covector or linear form. Similarly, we need odd differential forms so that, also in
a nonmetrical setting, we can calculate the quantity of something whose “direction”
is an arithmetical sign, such as the amount of positive or negative electrical charge
that occurs within a volume of space (always positively signed) to also give a signed
number. In this case the amount per volume would be represented by an odd 3-form,
while the volume of space would be represented by an odd 3-vector.

The first treatments of odd quantities is cloaked are the language and notation
of traditional tensor analysis such as Schouten’s books and papers. It is unclear to
me if de Rham was the first, or, perhaps, one of the first, to introduce a notation
and theory of odd differential forms, but we take the term odd, the English trans-
lation of the original French impair, from his 1955 book Variétés Différentiables
(Differentiable Manifolds) [53l pp. 19, 22 ff.].

The numbers of various types of special tensors and terms and associated with
them seem to have multiplied with the same fecundity as their indices.

Perhaps only the romantically mysterious attraction of odd quantities can explain
why even math grad students, such as Tiee [I74], take a stab at explaining them.

For a formal treatment of relative tensors (including tensor densities and pseu-
dotensors) in terms of a group acting on a set see Yokonuma’s book [203] pp. 68-63]
or the paper of Hidaka, Arima,and Asaeda [99]. A modern abstract tensor-algebraic
formulation of relative tensors can be found in Shaw’s book [I67, pp. 359-362].

Using the following passage paraphrased from (and further details from) Traut-
man’s talk notes [I78, p. 3] the approach of Yokonuma’s book [203] to tensor den-
sities, and pseudo-tensors can be related to sections of bundles.

Even in more advanced works, such as Wasserman’s [] odd orientations are either
not treated or given a cursory mention.

oKk ok ok ok KR KRRk KK R K

Although electrodynamics is a most complete exemplifier of differential forms,
its comprehensiveness may still be enhanced by rewriting Maxwell’s equations in
symmetrical form so that they include the, as yet unobserved, magnetic monopole.
We do not do it here, but if the field quantities arising from a monopole’s magnetic
charge were added, we would find that their representation requires differential
forms in all eight combinations of degree and orientation allowed in three-dimen-
sional space.

Unfortunately, this last property, the orientation of a differential form, is often
the subject of a one-sided discussion in both mathematical and physical works.
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That is, frequently only forms with an even or ordinary orientation are included—
those with an odd or twisted orientation being neglected. So we begin with an
introduction to both orientations.

In between, we develop a geometrically inspired, algebraic formalism® for the
exterior product of both odd and even forms. For its implementation, this formalism
requires an apparently new algebra, which we dub the orientation congruent (or
0C) algebra.

The most accessible definition of the orientation congruent algebra is its ax-
iomatic formulation in terms of generators and relations. We present this axiom
set here as a modification of the one for Clifford algebra. For calculations it is also
useful to define the OC algebra as a Clifford-like algebra and we do that also.”

By Clifford-like we mean that the signs of the terms in the OC product of two
given elements may differ from those of the terms in the Clifford product of the same
two elements. Both products, however, contain the same set of terms considered
independently of sign. In addition to its Clifford-like status, the OC algebra is also
one of a large class of nonassociative algebras known as noncommutative Jordan
algebras.

At the end, we apply our work to a problem encountered by Warnick, Selfridge
and Arnold [T95] when using their boundary projection operator method® in electro-
dynamics. In their paper [195] p. 332, fn.] they consult Burke who is also unable to
resolve the dilemma they face. Warnick et al. expediently choose to modify Burke’s
rule n A {(as, Q) } = {(a, )} B4 pp. 192 f.]. Burke gives this formula as necessary
for pullback to commute with the exterior derivative operator d. The version they
use, {(as, Q) An = {(a,Q)}, does not commute with d, but it does allow them
to write the boundary conditions consistently with the same sign for both the odd
1-form D and the odd 2-form H.

The main lesson of this paper for differential geometers is that odd differential
forms exist and can be defined on an orientable manifold without defining a global
volume form (or without using Bossavit’s double cover in the case of a nonorientable
manifold?).

Some quotes from Brian D. Conrad’s differential geometry class notes 4] follow.
Page 1: ... the l-dimensional top exterior power A"(V) (understood to mean F
if n = 0) is sometimes called the determinant of V', and is denoted det(V'). Page
2: In the special case F = TX, the determinant bundle det(7X) is often called
the orientation bundle of X; this line bundle is closely related to the theory of
orientation on manifolds, as we shall discuss later.

The orientation congruent algebra of an n-dimensional positive-definite vector
space, OC,,, is a rooted hyperbolic space of dimension 2" — 1 plus the dimension of
the root 1.

6The algebraic developments presented here are motivated by geometric pictures. As such
they exemplify the dialectic of right brain imagery and left brain lexical abstraction essential to
mathematical research. See Vinogradov’s essay in Nestruev [I34] pp. 213 f.] or the first couple of
pages of Manin’s preprint [[27]. For comments on the view that visualization has no or even a
hindering role in mathematics, see the interview with Pierre Cartier [I65} p. 27].

"The equivalence of these definitions is wearily proved in my draft paper |56, pp. 20 ff.].

8This method has also been exploited by R. Bhakthavathsalam as mentioned in his webpage

9.
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The following quote is from the paper [70, p. 15] or [{1l p. 15] by Figueroa-
O’Farrill et al. which is based on Lawson and Michelsohn’s book Spin Geometry
[TT7]. Their sign convention x - x = —||x||? is the opposite to the one used in this
paper. Cite new format Burke [36].

If w is a p-form and *w its Hodge dual, then their Clifford actions
are related by

*w = (—1)PPH/2y, .y (23)

where v is the volume form.
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2. DIRECTED QUANTITIES: THEIR DECOMPOSITION AND REPRESENTATION

We adopt the convention, found in Darling’s book [52, pp. 3, 41 et al.], of using
a bullet or filled circle for function composition as in (g e f)(x) = g(f(x)). This is
because, following the convention found in Rota and Stein’s paper [153], we reserve
the more commonly used open bullet or circle for the Clifford (“circle”) product
as in e o ej2 = ey. Since the orientation congruent product is a modified form of
the Clifford product, this last convention leads to the denotation of the orientation
congruent product as a circled circle as in e; o €10 = —es

The relationship of a vector to its graphical representation is direct and simple,
but that of a linear form is indirect and complicated. Therefore, we start with a
vector space and the concomitant multivectors of its exterior algebra.

In this Section we present the decomposition and representation of two prototyp-
ical examples, the even vector and the odd bivector. Although the result may seem
artificial and superfluous, we have chosen the even vector to be the subject of the
first decomposition. On the other hand, the simplicity of this choice recommends
it as an introductory example. In any event, the decomposition of an odd bivector
is completely natural and the reader should be more comfortable with these de-
compositions after considering it in Subsection 2.3 titled ” The Decomposition and
Representation of Odd Bivectors” below

The first subsection’s example helps us develop some basic geometric intuition
and fundamental symbolic machinery. Although it is applied there to only the na-
tive representation of even multivectors, in later subsections this framework allows
us to construct the other two correlated and extremum representations for general
directed quantities.

2.1. The Decomposition and Representation of Even Vectors. In intro-
ductory courses a vector is commonly defined as a quantity with a magnitude (its
length) and a direction, and then illustrated as a line segment with an arrowhead at
one end. This definition is, of course, a metrical one. It suggests the multiplicative
decomposition of a nonzero, Euclidean vector b into bf), the product of the real
number b, the magnitude or norm of b, defined with the help of a scalar product
as b = ||b|| :== Vb - b, and the unit vector written with a circumflex as b := b~'b
giving the direction of b.

In their 1989 paper [IT9, p. 100] Lounesto, Mikkola, and Vierros introduced
a refinement of this decomposition by further dividing the direction of a vector
into an attitude and orientation. For these authors a vector’s attitude is the line
containing it and its orientation is the sense in which the vector points along that
line. Lounesto et al. also applied this three-part decomposition to simple bivectors
so that a bivector’s attitude is the plane containing it and its orientation is the
sense of its “rotation” in that plane.

Working as they did with geometric algebra, that is, Clifford algebra interpreted
geometrically, Lounesto et al. had at hand a scalar product (or more generally a
covariant metric tensor) with which to find the magnitude of a vector, bivector, or
general p-vector. However, we want a similar, but basis- and metric-free dissection
of a vector. We find that the finest, basis-independent and nonmetric decomposition
of a vector is also tripartite but redundant. Its geometric version is given in Figure

2T
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0L

Ficure 2.1. This is the finest geometric, basis-independent and
nonmetric decomposition of a nonzero vector b. It consists of a
line segment s, a line [, and a ray r. The ray r is drawn with a
double arrowhead to distinguish it from the vector b. The equal
and addition signs are metaphorical.

The finest geometric, basis-independent and nonmetric decomposition of a nonzero
vector b is tripartite:

(1) a line segment s parallel to b, and which would exactly overlap b, carrying
the vector’s attitude and its relative magnitude, the nonmetric equivalent
of the vector’s magnitude;

(2) a line [ parallel to b carrying purely the vector’s attitude; and

(3) aray r parallel to b carrying the vector’s attitude and its orientation, that
is, the sense of its direction.

We seek symbolic formulations that mimic or are suggested by the three parts
of the geometric, basis- and metric-independent decomposition of a vector shown
in Figure ZT1 Although, when appropriate we look for metric equivalents as well.
We begin this quest by examining Jancewicz’s definition of a numerical relative
magnitude for a vector.

When a scalar product is not available, we cannot calculate the magnitude of a
vector or, more generally, a multivector. In his papers [105, pp. 389 f.] and [I06]
pp. 227 f.] Jancewicz considers nonmetric spaces. He cites the work of Lounesto
et al. [IT9] and points out that two vectors a and b have the same attitude if they
are parallel, that is, if a and b are such that there exists a real scalar A € R with
b = Aa. Nevertheless, Jancewicz states that, by using the last equation, we can
always define a [unique] relative magnitude for [nonzero] parallel vectors as |A|. In
full, he says that || is the magnitude of b relative to a.

We notice two things about the relative magnitude of b. First, A is invariant
under the sign change —b; this corresponds to the relative magnitude being associ-
ated geometrically with an unoriented line segment. Second, the relative magnitude
of b requires a vector parallel to b, implicit or explicit, for its definition. In the
geometric interpretation of relative magnitude this fact corresponds to requiring
the line segment s to be parallel to b. Thus, in the nonmetric case the relative
magnitude of b is separable from its attitude in only a conceptual or potential (if
a metric is introduced), not an actual, sense.

In the metric case, however, we can define the relative magnitude’s counterpart
as ||bl|, the magnitude of b, without direct reference to the vector’s attitude. The
attitude of b still plays a role in determining ||b||, which is especially evident if the
metric varies with direction. However, once we define or calculate the magnitude
of b we are done with its attitude and need not refer to it again. In other words,
the magnitude is a scalar, cleanly divorced from any vectorial properties such as
attitude. In general, though, we work without a metric.



EXTERIOR CALCULUS IN THE IMAGE OF ODD FORMS 23

We now provide a symbolic formulation, different than the relative magnitude of
a vector b, that is the counterpart of the geometric, nonmetric representation given
by the line segment s in Figure ZTl We choose a representation as a set of vectors.
Such a representation is similar to the set ker « which is used to symbolically
capture the geometrical representation of a linear form (covector) « as a pair of
oriented planes (see Subsection Bl below). We define this nonmetric, symbolic
representation first, followed immediately by the analogous metric one.

Definition 2.1. We call the symbolic, nonmetric representation of the line segment
s in the decomposition of the vector b the weight of b and write it in operator
notation as wtb. We define it as the following set:

(2.1) wtb:={v|v=+b}.

Remark 2.2. The weight of a vector b can be imaged as a separated tail-centered
or superimposed midpoint-centered pair of vectors b and —b. In Figure Bl we
have chosen the midpoint-centered representation of wtb with short perpendic-
ular slashes at its endpoints. We do not represent wtb as a line segment with
an outward-pointing arrowhead at each of its endpoints because that is the usual
representation of a line.

Definition 2.3. Let V be a metric vector space with a scalar product written as
an infixed, centered dot and let b € V be a nonzero vector. We call the metric
counterpart of wtb in Definition Bl the metric weight of b. We write it also in
operator notation as mwt b and define it as the following set:

(2.2) mwtb:={veV]|v#0andv-v=D>b-b}.

Remark 2.4. In Euclidean spaces the metric weight of a vector b can be imaged
as a tail-centered or midpoint-centered n-dimensional “sphere” of vectors with the
same length as b and pointing in all directions.

Remark 2.5. We see that both the nonmetric and metric weights of a vector b are
invariant under its inversion: wtb = wt +b and mwt b = mwt +b.

The line [, parallel to b in Figure 2] is the geometric representation of the
attitude of the vector b. We next provide the symbolic counterpart of [ which we call
simply the attitude of b. Since the attitude employs only the nonmetric vector space
relationship of being parallel, there is no metric version of the attitude. Therefore,
we immediately state the following set-of-vectors definition of the attitude.

Definition 2.6. Let R® be the set of real numbers excluding zero and let V' be a
vector space containing b. We call the symbolic, nonmetric representation of the
line [ in the decomposition of the vector b the attitude of b and write it in operator
notation as att b. We define it as the following set:

(2.3) attb:={veV|v=abandaeR"}.

Remark 2.7. There is no zero vector in attb. Therefore the set of points at the
tips of all the vectors in att b is not quite a line because one point, the origin, is
missing. It is, however, a punctured line. Strictly, we should have indicated this
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in Figure 2] by placing an open dot, the conventional representation of a missing
point, at the midpoint of the line [.

Remark 2.8. If b is nonzero, the set attb actually defines an equivalence class
of vectors in V*® := V' \ {0}. In projective geometry, where it is interpreted as a
projective point, this set is also called a ray.

The ray r, parallel to b in Figure 2] is the geometric representation of the
direction of the vector b. We next provide the symbolic counterpart of » which we
call simply the direction of b. Unlike the attitude, although the direction employs
only the nonmetric relationship of being parallel, the direction has a metric gener-
alization. This generalization is the metric orientation. In turn, it leads by analogy
to a nonmetric version, the extrinsic orientation. We define these two kinds of
orientation later in this subsection. But first we state the following set-of-vectors
definition of the direction.

Definition 2.9. Let RT be the set of positive real numbers and V be a vector
space containing b. We call the symbolic, nonmetric representation of the ray r
in the decomposition of the vector b the direction of b and write it in operator
notation as dirb. We define it as the following set:

(2.4) dirb:={veV|v=abandaecR"}.

Remark 2.10. If b is nonzero, the set dir b is actually an equivalence class in V*°.
Although, it defines an open ray without an endpoint, the set dir b can be identified
with the (closed) ray r of Figure ZZIl We briefly mention that this set is interpreted
in oriented projective geometry as an (oriented) point. Here are some references
for its application in computational geometry, computer graphics, computer vision,
and robotics: Stolfi’s book [I73] based on his dissertation [I72], Stolfi’s extended
abstract [I71], Kirby’s article [I12], Lazebnik’s thesis [T18], pp. 15 ff.], and Mason’s
book [I30, ch. 5]. Choi uses oriented projective geometry in a paper F5] pp. 72, 74]
on geometrical structures and Coxeter groups. For a brief mathematical description
of this geometry as a double covering or fibration see the paper of Below, Krummeck,
and Richter-Gebert [I7, p. 6 of preprint].

Our analysis of the intrinsic, nonmetric decomposition of a vector is complete.
Yet the descriptions of the geometric ray r and its symbolic counterpart, the di-
rection dir b, suggest the possible existence of another, more general concept, the
orientation of the vector b, that is not bound to the attitude of b. At first glance
it appears that in an intrinsic, nonmetric setting a vector’s orientation is not sep-
arable from its attitude. Yet our experience with the relative magnitude, weight,
and metric weight of a vector shows that introducing a metric does allow movement
away from the attitude of b. Thus, we first define the metric orientation of a vector,
and then, by analogy, its nonmetric orientation.

The extrinsic orientation of a vector (or of even quantities in general) may seem
somewhat artificial. However, the orientation of odd quantities is inherently ex-
trinsic. Later we will see that it is only by using the extrinsic orientation of even
quantities that we can treat both odd and even quantities in the same symbolic
system. We look next at an example that illustrates how the introduction of a
metric allows us to generalize the direction dirb and thus free it from the attitude
att b.
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In three-dimensional Euclidean space there exists a plane P perpendicular to a
given nonzero vector b. If we add any vector p in this plane to any positive scalar
multiple of b we obtain another vector d representing the orientation of b. This
vector d is on the same side of P as is b. Having found a way to move off the line
[ and outside the set att b, we can now state a definition.

Definition 2.11. Let V be a metric vector space with a scalar product written
as an infixed, centered dot. The metric generalization of dir b in Definition for
any nonzero vector b € V' is called the metric orientation of b. We write it also in
operator notation as morb and define it as the following set:

(2.5) morb:={veV|v#0and v-b=ab-b for some a € R"}.

Remark 2.12. If the metric is Euclidean this definition reduces to the simple state-
ment morb={veV|v-b>0}

Remark 2.13. The metric orientation is invariant under the transformation b +—
ab + p for any a € RT and any p € V such that p-b = 0.

Consider how to convert Definition ZTTlinto a definition of a nonmetric, extrinsic
orientation. Without a metric we no longer have a perpendicular space, but, if V' is
n-dimensional, an arbitrary (n—1)-dimensional vector space that does not contain a
nonzero scalar multiple of b would work just as well. The next definition formalizes
this notion as the extrinsic orientation of b relative to such a space.

Definition 2.14. Let b be a nonzero vector in the n-dimensional vector space
V. And let W be any (n — 1)-dimensional subspace of V' such that there exists
a (unique up to a scalar multiple) covector or linear form [ of the dual space V*
that satisfies the conditions G(b) # 0 and W =ker 5 := {v € V | f(v) = 0}. Then
the partial nonmetric analogue of mor b in Definition ZZTT] for the vector b is called
the extrinsic orientation of b relative to W. We write it in operator notation as
eor(b, W) and define it as the following set:

(2.6) eor(b, W) := {v e V| B(v) = ap(b) for some a € RT}.

Remark 2.15. The extrinsic orientation of b relative to W is invariant under the
transformation b — ab + w for any a € RT and any w € W.

Next we remove the extrinsic orientation’s dependence on a particular, but ar-
bitrary, complementary subspace W by taking the union over all such subspaces.

Definition 2.16. Let b be a nonzero vector in the n-dimensional vector space V.
And let # be the union of all the W, that is, the (n — 1)-dimensional subspaces
of V' described in Definition EET4l above. Then the complete nonmetric analogue of
mor b in Definition EZTTl for the vector b is called the eztrinsic orientation of b in
V. We write it in operator notation as eor(b) with V' understood from the context
and define it as the following set:

(2.7) eor(b) := {v €V |v =ab+w for some a € R and some w € #'}.

Remark 2.17. The direction of the vector b dirb may be viewed as the nonmetric,
intrinsic analogue of the extrinsic orientation of b.
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gsign
(direction)
A gauge
(weight)

the even vector b
native representation

FIGURE 2.2. This is an even vector b in its native (bipartite) geo-
metric representation with its gsign (generalized sign) and gauge
labeled.

Everything and more is now at hand with which to construct the first of three
standard bipartite geometric and symbolic representations of even directed quan-
tities. We call the first geometric one the native geometric representation. It is
illustrated for the even vector b in Figure This figure shows an ordered pair of
images (r,s) consisting of the ray r, representing the direction dir b, and the line
segment s, representing the weight wt b.

The symbolic counterpart of the ordered pair of images (r, s) is the native bracket
[dir b, wt b] written with double left and right square brackets. These brackets
represent an equivalence class that is an element in the bipartite Cartesian product
space OP (V) x W(V) where OP(V) is the oriented-projective space of the vector
space V and W(V) is its weight space. The native bracket is roughly a kind of
nonmetric, geometrically-generalized polar decomposition. Just as is true for the
polar form of a complex number, the native bracket is good for the multiplication,
but not the addition, of directed quantities.

Let us now use the same symbols that we employed for the ray r and the line
segment s with the new meanings » = dirb and s = wt b. Then from the properties
already established for the direction and the weight of an even vector (which are
generalizable to all directed quantities) we immediately have the following equali-
ties:

[r,s] = [ar,s] for all a € RT and
[r,s] = [r, £s].

We also require these equivalence classes to obey some additional sign equalities
that are expressed in the following equations:

[r,s] = —[—-r.s] and
—[r,s] = [—r,s]-
From equations (ZZ8) and ) we see that we have equality of native brackets that
have the same contents (disregarding sign) and the same sign parity counting the
sign in front of the bracket and the sign of the first (direction) part, but ignoring
the sign of the second (weight) part.

Later we develop a total of three standard geometric representations and three
corresponding bracket forms for directed quantities. We need some more suggestive,
generic terms, less awkward than “the first part” and “the second part” that we
can apply to any of the three bracket types. Let us call the first part of any of these
brackets, the gsign, and the second part, the gauge. The reader may take gsign as

(2.8)

(2.9)



EXTERIOR CALCULUS IN THE IMAGE OF ODD FORMS 27

short for generalized sign or geometric sign, whichever is preferred, as both are apt
descriptions of its role in all three brackets. The name gauge is also appropriate
because in all three brackets it acts as a generalized weight, measure, or magnitude.

These terms also suggest an analogy of the position and function of the gsign and
gauge in bracket notation to the position and function of the sign and magnitude
of signed numbers. That is, we write the gsign as the first part of a bracket just as
we write the number —5 with the sign in front. The second position contains the
gauge expressing a weight or measure just as the numeral 5 does. The role of the
quantities in this analogy, but not their order, is also consistent with their previous
analogy to the polar form of a complex number.

Along with this nomenclatures we also create some notation: the selection oper-
ators gsn and gau. From the discussion just above they correspond to the signum
operator sgn x and absolute value operator |z| for any x € R (notwithstanding that
the absolute value is written as enclosing bars rather than a prefix). The gsign op-
erator gsn returns the first part of any bracket and the gauge operator gau returns
the second part as illustrated here by native brackets:

gsn[s,r] = s for the gsign operator and

gaufs,r] =r for the gauge operator.

Because surely the native, most natural, form of a vector is just the vector
itself, it is only if we demand a bipartite decomposition that the term native is a
reasonable description for these geometric and symbolic representations of an even
vector. However, in the next Subsection we see that odd quantities are naturally
bipartite. Therefore, any kind of native form for both even and odd quantities, and
calculations among them, must be expanded to their “greatest common multiple”—
a bipartition. Thus, we cater to the odd and twisted.

We have learned as much as we can by considering even geometric objects alone.
In the following subsection, we look at the odd bivector with its outer or transverse
orientation. Odd quantities are defined, in general, nonmetrically with the help of
the extrinsic relative orientation eor and the relation of being not parallel. The
next Subsection develops the native representation of the odd bivector and the
remaining two standard bipartite representations of directed quantities.

2.2. The Exterior Algebra of Multivectors. Multivectors are the visible con-
tents of our brackets. We take their exterior algebra AV™ as the substratum of the
Clifford algebra C¢,,. The Clifford algebra is, in turn, a basis for the Clifford-like,
orientation congruent algebra OC,,. Then, the orientation congruent algebra is the
foundation for the oriented blade OB/ algebra. Finally, the oriented blade alge-
bra together with ordinary exterior algebra defines, the correlated bracket exterior
algebra KVP"?. Here is a schematic diagram.

exterior Clifford orientation oriented correlated bracket
congruent blade .
algebra 9 algebra —» exterior algebra
” algebra algebra ~irn
AV Cln ac, OB AV

2.3. The Decomposition and Representation of Odd Bivectors. This Sub-
section discusses the crucial case of an odd bivector. The initial motivation for this
paper was to find a way to symbolically mimic the geometric representations of odd
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tack\> S——weight

odd bivector
native representation

FI1GURE 2.3. This is the native geometric representation of an odd
bivector. It was copied (sans labels) from Schouten’s book [I62)
p. 55, Fig. 13].

quantities and construct an exterior algebra of all directed quantities expressed in
this form.

As mentioned at the end of the last Subsection there are three such geometric
representations. Two of these three, the native and the extremum one, are already
pictured in the literature, but not specifically named. The other, the correlated
one, appears novel. The native form is native to odd quantities only. None is truly
native to even quantities, but the extremum form comes closest. (We cater to the
odd and twisted.) Odd multivectors and multiforms have a native representation
because they can be directly measured in that form as the physical quantities of
theories such as electrodynamics. An explanation for the terms correlated and
extremum will be given later.

We adopt the tilde notation for twisted quantities, as in the expression D for
the twisted 2-form representing the electric displacement vector, that Burke used
in his paper [33] and Bossavit adopted later in his on-line monograph [23, pp. 73,
89].

Consider the odd bivector, call it 5, shown in Figure23l This and similar images
occur in the works of Schouten and van Dantzig [I64, pp. 451, 455], Schouten [I60}
p. 28], [162] pp. 31-33, 55], and Burke [35]. This particular image is copied from
Schouten’s Tensor Analysis for Physicists [162, p. 55].

The reader may have no previous experience with such an object. Therefore
we construct it from scratch based on this picture. The image of Figure is a
natural or native geometric representation of 5; we call its symbolic counterpart
[eor(+ att «D, att D), wt D] THIS SHOULD BE RATHER [gsn D, gau D] a native
bracket. We have used double brackets here because later we introduce two more
kinds of brackets in the forms (-, -) and (-,-).

The differential, dual counterpart to an odd bivector, an odd differential 2-form
can be integrated to find the surface area of a Mobius strip.

Transverse

There is an analogy to rational numbers and fraction bar notation. We write an
even or odd decomposable form as a pair of forms enclosed in a bracket denoting
equivalence classes of those pairs. This correlated grade bracket (CGB), splits into
a geometric sign (GS) form and an oriented measure (OM) form. The GS form
itself represents an equivalence class of ray and vector subspaces associated with
semi-oriented projective spaces. The OM form is just an ordinary form.

USE THIS: General terms for the brackets position one and position two will be
GS, gsn, geometric sign, and GA, gau, gauge.

Some text goes here. Some text goes here. Some text goes here. Some text goes
here.
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/ gblgn
‘/\ gauge/ >\

even vector odd blvector
native representation  native representation

FIGURE 2.4. These are the native geometric representations of
an even vector and an odd bivector with their gsigns (generalized
signs) and gauges labeled. The odd bivector was copied (sans
labels) from Schouten’s book [162] p. 55, Fig. 13].

9’5@5"’@

(c)
natlve correlated extremum
representation  representation = representation

FIGURE 2.5. These are the three standard geometric representa-
tions of an odd bivector. These images (sans labels) were copied
and modified from Schouten’s book [162, p. 55, Fig. 13].

— gsign — gsi gn
gauge .g S~ gauge /
(a)
native correlated extremum
representation representation representation

FIGURE 2.6. These are the three standard geometric representa-
tions of an odd bivector with their gsigns (generalized signs) and
gauges labeled. These images (sans labels) were copied and modi-
fied from Schouten’s book [162, p. 55, Fig. 13].

Some text goes here. Some text goes here. Some text goes here. Some text goes
here. Some text goes here. Some text goes here. Some text goes here.

Some text goes here. Some text goes here. Some text goes here. Some text goes
here. Some text goes here. Some text goes here. Some text goes here.

Some text goes here. Some text goes here. Some text goes here. Some text goes
here. Some text goes here. Some text goes here. Some text goes here.

2.4. Basic Terminology. In the tradition of multilinear algebra a multivector of
the exterior algebra can always be written as a sum of exterior products with each
product containing, say, p vectors as multiplicands. Such a multivector is also called
a p-vector or a multivector of degree p. For convenience, scalars are also called
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gsign (e——— g81gn
\ sange /\ gange //
natlve correlated extremum
representation representation representation

FIGURE 2.7. These are the three standard geometric representa-
tions of an even vector with their gsigns (generalized signs) and
gauges labeled. Two gsigns are drawn with double arrowheads to
distinguish them as rays from the two vectors that occur as gauges.

0-vectors and vectors, 1-vectors. However, in this paper we practice the custom of
geometric algebra as found, for example, in the books of Hestenes [91], Hestenes and
Sobezyk [97], and Lounesto [I23] by calling a p-vector a homogeneous multivector
(of degree p). Also, as these authors do, we redefine the term multivector as a
general sum of homogeneous multivectors which are not necessarily of the same
degree.

As remarked in the Introduction differential, or linear, forms come in exactly two
orientations. The well-known one is the even or straight orientation. The second,
less commonly known one is the odd or twisted orientation. Several other terms are
used in the literature to distinguish these two possible orientations of p-forms (and
p-vectors), but in this paper we prefer to use any of the four words just mentioned.

The number of terms applied to differentiate the orientations of these objects
may present some difficulty, which is only compounded when we encounter their
tensor analytic representation later. Table 2Tl gathers some of the more common
names for p-forms of both orientations together with some references in which they
appear.

Names for forms are separated by their orientations into the first two columns
of Table X1l To avoid further confusion we have simply labeled these “Column 17
and “Column 2.” Each row presents pairs of complementary names that are used
together to distinguish the two orientations. For emphasis the distinguishing terms
are printed in boldface. Terms enclosed in parentheses tend to be optional. Authors
sometimes substitute a generic word such as ordinary for the distinguishing terms
of Column 1. Occasionally they write in “diagonal” nomenclature by mixing the
Column 1 terms of some row in Table EXJl with the Column 2 terms of another row.

The French terms in the top row of Table BXIl seem to have been used first
by de Rham. Although the specific reference cited here, his monograph Variétés
Différentiables B3], may not be the source of their first appearance. The French is
used too by some authors writing in English. In the second row we find the trans-
lations of de Rham’s original French terms as they appeared in the English version
of de Rham’s book [54]. In the English translation we also find the slight variation
of appending the distinguishing phrase of even (odd) type to the description of a
p-form.

Testing some Bossavit References [24], [22] and [21].



EXTERIOR CALCULUS IN THE IMAGE OF ODD FORMS

TABLE 2.1. Equivalent Terms for the Orientation Parities of Di-
rected Quantities

Complementary
Orientation Parities

References

pair impair de Rham [53] pp. 19, 22 ff.]
oven odd de Rham [54l pp. 17, 19 ff.],
Jancewicz [108)
Frankel 75, pp. XX ff.],
(ordinary) | twisted || Burke [33], B4, pp. 151 ff., 183 ff],
Bossavit [21], pp. 67 ff.]
untwisted | twisted Warnick et al. [T95],
(true) pseudo- Jancewicz [T05 [T06],
Frankel [76, pp. 86 f.]
polar axial Sorkin [I70]

TABLE 2.2. The Gsign and Gauge Types of the Three Represen-
tations of Directed Quantities

Representation

Native Correlated Extremum

Gsign Type

correlated correlated extremum

Gauge Type

weighted  vectorial vectorial

TABLE 2.3. Classification of the Three Representations of Di-
rected Quantities by Bigrade Type, Sign Count, and €2-Binding

) Sign Count 2 -Binding
Bigrade . .
Monosigned  Bisigned | Unbound Bound
[] (@ [1 ()

Correlated native correlated native correlated
. ) )

xtremum — —

extremum | extremum

In Table 22 the multivectors in the “Differential Geometry” column are written
in multi-index form logically derived from a certain notation for the basis vectors of
the tangent space defined locally at a point in a manifold by a particular coordinate
chart. Our use of this basis vector notation follows Bossavit in his treatise [23} p. 50]:
the notation 9; replaces the more traditional form 5

2.5. The O-Projective-Linear Space and Native Brackets. The o-projective-

linear bispace

1%}

31
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TABLE 2.4. Examples of Directed Multivectors in Six Representations

Diff. Extnd. Wﬂl.i am s Brackets
Geom Grass. Twisted
" | Algebra | Notation Native ‘ Correlated ‘ Extremum
1 1 1 [1,1] (1, 1) (1,1)
er el e le1,e] (e1,e1) (1,e1)
b > > e [e2, e2] (e2, e2) (1,e2)
fi €12 €12 €12 [[912, 912]] <<912a e12>> ((1, 912))
er3 ei3 ei3 —[es1,es] | —(esi,es1) | —(1,e31)
Q0 €123 Q [, ] (2, Q) (1,9)
(1,9) r Q [2,1] (1) | (21)
(e1,92) re; €23 [e2s, e1] (e23,e1) (Q2,e1)
8 (e2,9) T€ €3 [es1, e2] (e31,e2) (22,e2)
d || (e12,9) reis e; [es, e12] (e3,e12) (2, e12)
(613, Q) re13 —€ —[[92, e31]] —<<82, e31>> - (Q, 931))
(2,9) rei2; 1 [1, €] (1, ) (©2,9)
TABLE 2.5. Fundamental Sign Laws of the Three Representations
of Directed Quantities
Representation
Sign Law
Native Correlated Extremum
Migratory || —[s,g] = [-s,9] | —(s,9) = {=s,—9) | =(5,9) = (s,—9)
Unbinding || [s,9] = [s, —9] — (s,9) =(-s,—9)

Remark 2.18. For any x € V*® the ray [x] may be identified with one point of the
projective geometry P (V'); while the semiray [x] may be identified with one of two
opposite points of the oriented projective geometry OP (V'), the other being [—x].

2.6. Equivalence Rules of the Three Brackets. These notions are most trans-
parent when the gsigns and gauges of brackets are restricted to the standard basis
blades (multivectors) or their negatives. We call such blades basic blades and the
brackets formed from them basic brackets. However, unless otherwise stated the
results given below apply to brackets with general gsigns and gauges.

Table gives the fundamental equivalence rules for the brackets of the three
representations under certain sign changes. These are the fundamental sign laws.
They divide into two types, the migratory and the unbinding sign laws.

The migratory laws govern how a negative sign outside a bracket moves inside
and distributes over the gsign and gauge. The migratory sign laws for the native and
extremum brackets are semidistributive. 1 use this term to mean that the external
sign distributes to only one of the two parts: the gsign for the native bracket and
the gauge for the extremum bracket. The migratory sign law for the correlated
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bracket is (fully) distributive: the external sign distributes to both the gsign and
gauge.

The unbinding sign laws describe valid sign changes within a bracket that re-
verse the orientation of the bracket itself. For valid basic brackets with gsign s
and gauge g the bracket orientation is given by s ® g € {£1,+Q}. Correlated
brackets representing odd quantities are fixedly bound to either € or —€2 during a
calculation. Correlated brackets representing even quantities are always bound to
+1 by definition. Therefore, correlated brackets have no unbinding sign law. The
migratory sign law of the native bracket is also unbinding, although it is listed in
only the migratory row of Table

Now we discuss the sign laws that can be derived from the fundamental ones. We
consider the simpler cases of the native and extremum brackets first. Altogether
there are eight possible sign patterns for any bracket. By starting with the two fun-
damental equations involving four of these sign patterns, we can derive altogether
two strings of equalities among four sign patterns. Therefore, for each gsign-gauge
pair that define a valid odd or even bracket, the native and extremum brackets
divide into two equivalence classes, each the negative of the other.

For native brackets we immediately derive the following sign equivalence laws
(including the fundamental ones) from Table

[[Svg]] = [[87 _g]] = —[[—S,g]] = _[[—S, —g]] and
_[[Svg]] = [[_Svg]] = [[_87 _g]] = _[[87 _g]]'

Equations (ZI) can be expressed more compactly in terms of the “plus-or-
minus” + and “minus-or-plus” F symbols consisting of pairs of coordinated signs:

+ [+£s,9] = £[+£s, —g] and

F[Es, 9] = Fl+s, —g]-

From these equations we see that native brackets with the same contents disregard-
ing signs and the same sign parity disregarding the sign of the gauge are equal.

For extremum brackets we immediately derive the following sign equivalence laws
(including the fundamental ones) from Table

((Svg)) = ((_87 _g)) = _((_Svg)) = _((87 _g)) and
—(s,9) = (s,—9) = (=5,9) = —(=s,—9)-

As in equations (Z.IJ), these relationships can be expressed more compactly in
terms of coordinated sign pair symbols:
(£s,%+9) = —(=s,7g) and
—(&£s,+9) = (£s,79)-
From these equations we see that the extremum brackets with the same contents
disregarding signs and the same sign parity are equal.

Finally, we discuss correlated brackets. Because they are bound to an arbitrarily
chosen but fixed orientation, €2 or —€2, and because the directions of the gsign and
gauge of an even correlated bracket must be equal by definition, it is possible for a
gsign-gauge pair that would be valid in a native or extremum bracket to be invalid
in a correlated bracket. Therefore, the eight possible sign patterns produced by
distributing plus and minus signs in the three positions, bracket, gsign, and gauge,
sort into two pairs of two equations. One set of pairs contains four brackets that
are all valid and the other contains four brackets that are all invalid under a given

(2.10)

(2.11)

(2.12)

(2.13)
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assignment of grade conforming gsigns and gauges. The valid pair of equations is
further divided into two equations with the brackets in one of the equations being
the negatives of the brackets in the other equation.

Thus we have the following set of equations with one or the other of the pairs of
equations (ZT4al) or (2T4H) valid depending on the values of the gsign s, the gauge
g, and the binding orientation, €2:

(s,9) = —(~s,—g) and

(2.142) —{(5.9) = {~s.~9),

or
{(s,—g) = —(—s,9) and
—(s,—g) = (=s,9)-

For example, if we let s = e;, g = es3, and bind the correlated brackets to
Q = eja3, the following equation for an odd quantity is valid (s, g) = —(—s, —g),
but the equation —({s, —g) = (—s,g) is invalid. Similarly if we let s = —e; and
g = ey, the following equation for an even quantity is valid —{s, —g) = {(—s, g)),
but the equation (s, g) = —(—s, —g) is invalid.

We can summarize equations (ZI4) if we first make two definitions. Let the
external sign parity of a correlated bracket be odd if it has an odd number of nega-
tive signs in front of it and even if it has an even number of negative signs in front
of it. Analogously, let the internal sign parity of a correlated bracket be odd if it
has an odd number of negative sign inside it and even if it has an even number of
negative signs inside it. For example, the correlated bracket expressions —(—s, —g)
and — (s, g) both have odd external sign parity and even internal sign parity. Then
from these equations we see that correlated brackets with the same contents disre-
garding signs, and with opposite external sign parity but equal internal sign parity
are either equal or both invalid.

Equations (ZI4)) are written in parallel fashion with respect to the unbinding
sign law for native brackets [s,g] = [s,—g]. Thus, if we had native instead of
correlated brackets, the upper equations of equation pair ([ZZI4al) and equation pair
(2T4H) would be equated, similarly the bottom equations in these two equation

pairs would also be equated. Thus, neither equation pair (ZZIZal) nor equation pair
&T4H) would be invalid.

(2.14b)

2.7. William’s Twisted Notation. So close. A brilliant innovator.
Another clue. Lounesto et al. [IT9] introduced the concept of directed quantity.
Line of action. Cite Jancewicz.

2.8. Some Tensor Theoretical Stuff. In this paper we follow the approach of
Aberg in his research report [l p. 30]. Thus we view both the Clifford algebra and
the OC algebra as the exterior algebra with different multiplications. Therefore we
begin with a thorough foundation for the exterior algebra.

Using the following passage paraphrased from (and further details from) Traut-
man’s talk notes [I78, p. 3] the approach of Yokonuma’s book [203] to tensor den-
sities, and pseudo-tensors can be related to sections of bundles.

Recall two ways of describing vector fields on a m-dimensional man-
ifold: 1. Start from principal bundle P of linear frames. Vector field
X is an equivariant map. 2. Tangent bundle: Vector field X’ is a
section of the tangent bundle. Connection between the two: 1=2
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by forming associated bundle; 1<2 by defining a linear isomor-
phism.

‘ Group }—»{ Ring Vector Space }—»{ Algebra ‘

For a full mathematical treatment of the exterior algebra as the quotient of a
tensor algebra by an ideal see the book by Dummit and Foote [64].

The following definition of an R-algebra is taken directly from the book by Dum-
mit and Foote [64] p. 323].

Definition 2.19. Let R be a commutative ring with identity. An R-algebra is a
ring A with identity together with a ring homomorphism f: R — A mapping 1r
to 14 such that the subring f(R) of A is contained in the center of A.

Lemma 2.20 (3.1.6 verbatim from Rossmann’s book [I51} pp. 134 f.]). There is a
one-to-one correspondence between differential k-forms and alternating (0, k)-ten-
sors so that the form fi; dx' ANdx? A--- (i < j < ---) corresponds to the tensor
Ty dr' @ dz? @ - defined by
(2) Tj;... changes sign when two adjacent indices are interchanged.
Proof. As noted above every k-form can be written uniquely as
fij det ANdzd A (i< <)

where the sum goes over ordered k-tuples ¢ < j < ---. It is also clear that an alter-
nating (0, k)-tensor T}; dz' ® da? ® -- - is uniquely determined by its components

Ty = fi. ifi<j<--
indexed by ordered k-tuples i < j < ---. Hence the formula
Tl] = fl] if i < J< -

does give a one-to-one correspondence. The fact that the T;; = defined in this way
transform like a (0, k)-tensor follows from the transformation law of the dz*. O

Clifford Opposite Algebra. See Deligne’s Notes on Spinors [B5, p. 107 (phys. p. 9)]
for “opposite” in ungraded vs. super sense, and [B55, p. 108 (phys. p. 10)] “(E) The
identity of V extends to isomorphism from the opposite of the super algebra C(Q)
to the super algebra C(—Q).”

Levi-Civita Tensor ¢;,...;, vs. the Tensor Density ¢;,...;, . See Pope’s Geometry
and Group Theory [T42, pp. 55 (phys. p. 56)].

Clifford Algebra Isomorphic to Exterior Algebra. For this and more in the
context of quantum theory and modern mathematical physics (similar to Aberg,
Crumeyrolle, Fauser, or Oziewicz) see Roepstorff and Vehns’ An Introduction to
Clifford Supermodules [I50} pp. 6 ff.]. Look especially at the source [T}, pp. 6]
of this quote “...or phrased differently, that the above CAR algebra is irreducibly
represented on the superspace AV.”

Some bookmarks from Melrose’s lecture notes of the Graduate Analysis Seminar,
18.199 (Spring 2006) [131] follow:

(1) Ricardo Andrade, Clifford algebras, Pin and Spin groups, pp. 3 f.;
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(2) Yakov Shapiro, Clifford modules and connections, pp. 4 f.;

(3) Ricardo Andrade, Periodicity, p. 9;

(4) “Theorem 3. For an oriented manifold manifold M the SO bundle given by
oriented orthonormal frames has a spin structure,...” p. 11;

(5) Yakov Shapiro, Z2-grading, p. 12.

Here is a quote from Chapter 3, Coordinate Invariance and Manifolds, of Mel-
rose’s lecture notes for his class Graduate Analysis, 18.156 (Spring 2007) [132] p. 5,
“357]:

2. Manifolds.
I will only give a rather cursory discussion of manifolds here....
There are in fact several different, but equivalent, definitions of a
manifold.

2.1. Coordinate covers. ...

2.2. Smooth functions. ...

2.3. Embedding. ...

(2.15) ArB

Ar B
TAﬁB

TXA:*B

(2.16) A-B

A-B
TA—\B

TXA‘\B

(2.17) ALB

AL B
TA\_B

TXALB

(2.18) A_LB

A_B
TAJB

TXAJB

One theoretical basis for these reduction rules is given by the more complicated
9 formulation of multilinear algebra, tensor algebra, and the quotients of tensor
algebras by ideals. This is an important approach, but '° too elaborate for this
introductory paper. We can give a relatively simple, generators and relations ax-
iomatic basis for all these algebras as algebras of a quadratic form (or its associated
nondegenerate '' symmetric bilinear form). From such axioms we can derive as
theorems various reduction rules important for calculation. Instead we will use a

94 B
10TAJB

AL B
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hybrid of reduction rules and the Clifford-like characterization of the OC '? algebra
with occasional reference to the Chevalley isomorphism of the linear spaces of the
exterior, Clifford, and orientation congruent algebras (known among some theoret-
ical physicists under the name the Kéahler-Atiyah algebra according to Crumeyrolle
in his book [2T}, p. 44]. We bring in the Clifford-like formulation of the OC algebra.
Formulation by the Chevalley isomorphism also gives a clean, not too complicated,
theoretical formulation for the exterior and Clifford algebras, but we still cannot
include the OC algebra because of its nonassociativity. (Maybe false?) Clearly the
Hopf algebraic approach encompasses all three algebras. While it uses an intriguing
theory that allows a nonsymmetric (degenerate, too?) bilinear form and also leads
to important algorithms for computing the products of these algebras, it is still to
complicated for this paper.

the exterior products v A w of vectors v, w in some vector space V of finite
dimension n. The set of all such products, their scalar multiples, and their sums
is another vector space of dimension 2", symbolized as AV, and the associative
algebra naturally defined on it is called the exterior algebra also written with the
same symbol.

(2.19) AV + AV

The wedge product pp. 211 ff. (223 ff.) of smooth.djvu Intro to Smooth Manifolds,
John M. Lee.

Mathematics for Physics I, Michael Stone, amaster.pdf, App. A, Linear Algebra
Review, pp. 396 ff. (406 ff.)

12TALB
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3. ORIENTED DIFFERENTIAL FORMS

given an n-dimensional vector space E, whether or not it has an

inner product, one can always construct the dual vector space E*,

and the construction has nothing to do with a basis in F.
Theodore Frankel [76] p. 44]

Whenever we consider or deal with some linear space L, over say
field R or C, ... then we have on hand automatically, independent
of our wishes, another linear space L* = Hom(L,R), dual to L, of
all linear mappings

L*>a:L>v—avelR....

To say that we do not need to consider “any” dual space is mean-
ingless because, independently of our wishes, dealing with L we
have to do at least with the pair {L, L*}.

Zbigniew Oziewicz [I35] pp. 245 f.]

Before we can understand why we need odd differential forms and how to cal-
culate with them we must learn their names, appearances, and origins. We begin
with an intuitive, geometry-based approach.

The concept of an odd differential form may be traced to an analogous tensorial
version given by Weyl in his book [T98]. Although, the related concept of outer
orientation appears at least as early as Veblen’s pioneering topology book [T90} pp.
10, 194}, and Veblen and Whitehead’s differential geometry book [T91] pp. 55 f.].
An outer orientation can be given a neat, modern definition in terms of quotient
spaces and the ordinary, inner orientation of a vector space. This is described by
Shaw in his book [I66] p. 78].

Burke, first, in the paper [33], later, in the book [34], and finally, in the two draft
papers [35] and [36], became the strongest, most recent advocate for the formulation
of electrodynamics using both even (ordinary) and odd (twisted) differential forms.
Unfortunately, William Lionel Burke died at age 55 in 1996 from a cervical fracture
that he suffered in an automobile accident. See his Wikipedia entry [I99] for more
information.

3.1. Imaging Differential Forms. We begin with some facts about the existence
and nature of the dual space of covectors from which differential forms are con-
structed. These facts are emphatically stated in a couple of quotations. First, we
quote Frankel from The Geometry of Physics [76, p. 44]:

. given an n-dimensional vector space E, whether or not it has
an inner product, one can always construct the dual vector space
FE*, and the construction has nothing to do with a basis in F.

In this line Oziewicz says in Reference [I35, pp. 245 f.]:

Whenever we consider or deal with some linear space L, over say
field R or C, ... then we have on hand automatically, independent
of our wishes, another linear space L* = Hom(L,R), dual to L, of
all linear mappings

L*>a:L>v—aveR.
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(a) (b) (c)

Fi1GURE 3.1. Constructing a Picture of a Covector

To say that we do not need to consider “any” dual space is
meaningless because, independently of our wishes, dealing with L
we have to do at least with the pair {L,L*}. In fact all tensor
products are involved.

Having been assured that the dual space (along with its antisymmetric tensor
products that make up differential forms) exists and cannot be ignored, we in-
quire about picturing exterior differential forms. On the contrary, Yang uses his
review [202] pp. 968 f.] of the book Applied Differential Geometry [34] by Burke
to unequivocally shun the practice of drawing pictures of differential forms. We
do not follow his advice, but we must realize the pictures we draw are somewhat
fraudulent.

A degree of fraud enters because there is no way to draw a p-form in the same
picture with a g-vector. Localized to a single point of a manifold, a differential
p-form becomes a p-covector, a member of the space of the exterior algebra of the
cotangent space. This space is dual to space of the exterior algebra of the tangent
space containing g-vectors. Although, these spaces are linked by duality, they are
separate. Yet, in their publications Misner, Thorne, and Wheeler [I33], Burke
B3, B4, and Schouten [160, [[62], to name a few, all seem to be drawing exterior
differential forms. So what are these authors really picturing?

For an answer we turn again to Oziewicz, who continues in his paper [I35 p.
246]:

. it is important to understand the geometrical representation of
the covector o € L* as the codimension one hyperplane Kera =
{veL,av=0} C L. In fact the covector a is completely and
uniquely determined by Kera and any vector v € L such that
av = 1. The wave fronts for instance are described by covectors
(forms).

If we can draw the direct space of vectors only, our pictures of covectors are
actually a representation of them in terms of vectors. From Oziewicz’s recipe we
construct these pictures in a 3-dimensional space as follows. First, as in Figure
B(a), for a given covector a we draw the hyperplane determined by the vectors in
the kernel of o. Any vector wholly contained in this hyperplane is in Ker .. Next,
as in Figure BIIb), we find some vector v that when evaluated with « gives unity
av = 1. As Oziewicz says these two ingredients are all we need. However, for the
usual picture of a 1-form as parallel “slicers” or “chopping blades,” we translate a
copy of the kernel hyperplane to a location at the tip of v. This gives the hyperplane
Ker a4 v. Finally, removing v completes the familiar drawing of a covector shown
in Figure Bl(c).
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3.2. What Are Odd Forms? The prototypical odd form is the 3-form of unit
volume density Q). Here we have used the tilde, as we do throughout this paper,
to indicate an odd p-form or p-vector. Suppose that we have some signed additive
quantity such as electric charge that is distributed throughout a region R of ordinary
physical space. Then this distributed charge can be represented as the charge
density 3-form QQ. Evaluating this expression over a chain of composed of odd
3-vector or volume capacities gives the net (positively or negatively signed) charge
Q) contained within R.

We can derive all odd forms from the set of even forms and the odd unit scalar
1. Differential geometry provides us with a technique for representing the odd unit
scalar 1 by pairing the unit scalar 1 with the top form as (1,9Q).

3.3. The Many Names of Odd Forms. As remarked in the Introduction dif-
ferential, or linear, forms come in exactly two orientations. The well-known one is
the even or straight orientation. The second, less commonly known one is the odd
or twisted orientation. Several other terms are used in the literature to distinguish
these two possible orientations of p-forms (and p-vectors), but in this paper we
prefer to use any of the four words just mentioned.

The number of terms applied to differentiate the orientations of these objects
may present some difficulty, which is only compounded when we encounter their
tensor analytic representation later. Table Bl gathers some of the more common
names for p-forms of both orientations together with some references in which they
appear.

Names for forms are separated by their orientations into the first two columns
of Table Bl To avoid further confusion we have simply labeled these “Column 17
and “Column 2.” Each row presents pairs of complementary names that are used
together to distinguish the two orientations. For emphasis the distinguishing terms
are printed in boldface. Terms enclosed in parentheses tend to be optional. Authors
sometimes substitute a generic word such as ordinary for the distinguishing terms
of Column 1. Occasionally they write in “diagonal” nomenclature by mixing the
Column 1 terms of some row in Table Bl with the Column 2 terms of another row.

The French terms in the top row of Table Bl seem to have been used first
by de Rham. Although the specific reference cited here, his monograph Variétés
Différentiables 53], may not be the source of their first appearance. The French is
used too by some authors writing in English. In the second row we find the trans-
lations of de Rham’s original French terms as they appeared in the English version
of de Rham’s book [54]. In the English translation we also find the slight variation
of appending the distinguishing phrase of even (odd) type to the description of a
p-form.

3.4. The Schouten Icons. Energy integral motivation.
Tensorial terms and notation. Densities

3.5. Probing Electromagnetic Fields for the Native Geometric Structure.
The Maxwellian double plates.

The quantities of electrodynamics (and many, if not all, classical field theories)
are naturally grouped as pairs with complementary physical and geometric proper-
ties. Let us express the field quantities in each of these pairs as differential forms.
Then, physically, the exterior product of the forms in each pair always has the same
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TABLE 3.1. Mathematical Terms for Differential Forms with the
Two Orientations

Column 1 | Column 2 | References
pair p-form impair p-form de Rham [53] pp. 19, 22 ff]
de Rham [54] pp. 17, 19 {f],
even p-form odd p-form Jancewicz [I08]

Frankel [75] pp. XXI{],

(ordinary) p-form | twisted p-form | Burke [33] & [B4, pp. 151 ff., 183 ff],

Bossavit [21} pp. 67 ff.]
Jancewicz [L05], [T06],

(true) p-form pseudo-p-form Frankel [76l pp. 86 f.]

polar p-form axial p-form Sorkin [T70]

number
odd trivector scalar /
ey . . 22n - .. '+I \ v .

number +

odd scalar triform

FIGURE 3.2. Schouten’s Diagram Revised

dimension (measurable physical property). In electrodynamics this dimension is en-
ergy, although in other field theories it may be something else.
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Geometrically, the degree of each product is the maximum or top degree, i.e. it
is equal to the dimension of the linear space or manifold on which these differential
forms are defined. Therefore, on an n-dimensional manifold, if one of the two forms
in a pair is a p-form, the other is a (n — p)-form.

Furthermore, this geometric duality extends to the orientations of the forms.
This fact follows quite naturally when we consider that, in three dimensional space,
energy and volume are taken to be nonnegative quantities. Then, if space itself has
no intrinsic orientation, the exterior product of two forms in a pair must possesses
an odd or twisted orientation. Therefore, the orientations of the differential forms in
these pairs must be complementary—one even, the other odd—to yield a product
which is an odd form.

The physical and geometric duality we have just described is fundamental in
Tonti’s analysis of the mathematical structure of physical theories [I75) 76 [T77].
As it happens in his analysis, the field quantities represented by an even differential
forms are the configuration variables and those represented by an odd form are the
source variables. Tonti’s scheme also embraces theories other than field theories,
where, of course, the characterization of the physical quantities by the orientation
of the differential forms representing them does not directly apply. Also, as Frankel
[76, p. 122] points out, if the hypothetical magnetic monopole carrying magnetic
charge is found, the correspondence we have given between even vs. odd orientations
and configuration vs. source variables would be reversed. Nevertheless, even though
we could use other corresponding pairs of terms such as intensity and quantity as
given by Frankel [76] p. 122], or intensive and extensive variables, as inspired by
thermodynamics, in this paper we adopt Tonti’s terms configuration and source
variable as generic labels for such physical quantities.

Certain classes of two-typed mathematical concepts may represent this dichotomy
of physical quantities. Unfortunately, due to different theoretical underpinnings or
just different conventions, a large number of pairs of terms have appeared in the
literature.

TABLE 3.2. Some Mathematical Terms for Differential Forms Cor-
responding to Configuration and Source Physical Variables

Differential Forms

Configuration Variable | Source Variable | References
Burke [33] [34]
(straight) p-form twisted (n — p)-form Frankel [75]
pair p-form impair (n — p)-form de Rham [53

de Rham [54]

even p-form odd (n — p)-form Jancewicz [108]
polar p-form axial (n — p)-form Sorkin [170]
Frankel [70]

(true) p-form pseudo-(n — p)-form | Jancewicz [T05] [T06]

Tables and present some of these many names for the mathematical ob-
jects corresponding to force and source variables together with some references. In
these tables the distinguishing terms are in boldface. For some rows of Tables
and the mathematical type representing a force variable is frequently distin-
guished by the absence of a term. Although, for these same rows, sometimes an



EXTERIOR CALCULUS IN THE IMAGE OF ODD FORMS 43

TABLE 3.3. Some Mathematical Terms for Tensors Corresponding
to Configuration and Source Physical Variables

Tensors
Configuration Variable Source Variable References
covariant contravariant
p-vector ‘W-p-vector Schouten &
density of weight +1 van Dantzig [164],
contravariant covariant Post [143] pp. 503 £.],
(ordinary) (n — p)-vector Tonti [I75, p. 122]
. . W-(n — p)-vector
density of weight +1
. contravariant
covariant
p-vector p-vector
density of weight +1 Schouten [I60] p. 28],
contravariant covariant Schouten [I62, pp. 29 ff.]

(n — p)-vector

W-(n — p)-vect
A-density of weight +1 (n — p)-vector

covariant contravariant
lative p-vector
absolute) p-vector even re p
( )P of weight +1 adapted from
contravariant Kuptsov [TT6]
odd relative (n — p)-vector [not named]

of weight 41

contravariant densitized

covariant d ¢
true) p-vector pseudo-p-vector
( )P of weight +1 adapted from
contravariant densitized . Baez [6]
covariant

(true) (n — p)-vector

seudo-(n — p)-vecto
of weight 41 p (n = p)-vector

optional term is inserted. This term may be either a row-specific one (shown in
parentheses) or the general one ordinary (not shown). Note that de Rham’s [53]
original French terms pair and impair mean simply even and odd in English [54].

For compactness in Table B2 the verbal variations which accompany the differ-
ent degrees or orders of a differential form, such as scalar, vector, or bivector, are
reduced to the general phrases p- or (n — p)-form. However, in the tensor analytic
formulations of Table B3l the direct counterpart of a representative even p- or odd
(n — p)-form becomes a covariant p- or (n — p)-vector, respectively, with a suitably
descriptive phrase or symbol added. The generality of tensor analysis encourages
us to consider another counterpart to both differential form representatives, thus
doubling the entries in Table These alternative species, dual to the direct ten-
sorial counterparts, were described as densitized by Baez [6]. They appear in Table
as contravariant (n — p)- and p-vectors with ranks complementary to the direct
tensors.
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We should also mentioned here that the term p-vector always denotes a totally
antisymmetric tensor, the only species of interest in this paper. In a more general
context, a phrase such as contravariant p-vector density of weight +1 would be
replaced with contravariant tensor density of weight +1 and valence p. Even more
generally, a true or absolute tensor transforms as

(3.1)
and a pseudo- or relative tensor transforms as
p, 0z oxtm gzk Oakn
Fn als " Qalm 9z i

Because of its unique combination of simplicity and comprehensiveness, the best
physical examples for introducing the machinery of exterior calculus come from
classical electrodynamic theory. This is especially true of the modified theory of
Maxwell’s equations rewritten in symmetrical form to include the as yet unob-
served magnetic monopole carrying a hypothetical magnetic charge and the field
components due to it.

This is a study of the odd (also called twisted) differential forms generated by
the classical field theories of physics. We consider the following questions:

(3.2) P =1(x) pitl

What are more natural geometric representations of these odd forms?
What new algebraic formalisms reflect these geometric representations?
How can exterior algebra and calculus be done in these new formalisms?
What are some applications of this reformulated exterior calculus?

The mathematical basis of these theories has been under continuing development
for over 250 years. Many workers have contributed to it from the early days of Euler
to the present. For details of this history see [IT0, [T} [T55].

We summarize the standard exterior calculus in the finite-dimensional case.
First, we require an n-dimensional manifold M on which p-forms (antisymmet-
ric tensor fields) w,, exist. Also defined is the exterior derivative operator d which
takes a p-form w,, to a (p+1)-form wyt1. Introducing the exterior or wedge product
A, we may multiply a p-form w, and g-form wy to yield a (p + ¢)-form wpy4. The
action of the d operator on the exterior product must be defined to follow a kind
of Leibniz rule d(w, A wy) = dwp A wy + (—1)Pw, A dwy. The interior product (or
contraction operator) iy, where X is a vector field, allows the reduction of a p-form
to a (p — 1)-form as ixw, = wp—1. At this point the Lie derivative may also be
defined.

If the manifold M is equipped with a metric g and an n-dimensional volume form
Q we may define the Hodge star operator x as a map from a p-form to a (n—p)-form
*wp. Next, a scalar product for differential forms is formulated in terms of the %
operator and 2. With a scalar product in hand the coderivative operator d* may
be defined as the adjoint (or dual) of d. Finally, we form the Laplace-Beltrami
operator A = d + d*, the generalization of the Laplacian of vector calculus.

According to Hawkins [86], the basic formalization of the exterior calculus was
first laid down by Elie-Joseph Cartan in a paper on Pfaff’s problem 1], in which
he defined the differential form and gave explicit rules for the exterior product and
derivative of forms. Later workers added to the repertoire

According to Hawkins [86], the calculus of exterior differential forms remained
unformalized before 1899. It was Elie—Joseph Cartan, in a paper on Pfaff’s problem
HET), who first defined the differential form and gave explicit rules for the exterior
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product and derivative of forms. However, the manipulation “the things which
occur under integral signs,” as Flanders called them [2, p. 1], was a not unpracticed
skill before 1899. Asada’s review [B] recounts that in the early days, even without a
complete formal framework for the exterior calculus, “Poincaré developed the theory
of integration of 2- and 3-forms together with considerations on orientation.”

Although the pioneering Cartan himself applied this new tool to physics, perhaps
the first mathematician to address physicists and engineers in his discussion of
applications was Harley Flanders. The first edition of Flanders’ text Differential
Forms with Applications to the Physical Science was published in 1963 [72].

Of course, which properties are relevant will depend on the application at hand,
for example in the electromagnetic theory, the duality between the electric and the
magnetic fields is important. To find the optimal discretisation from an algebraic
point of view is the problem of interest here. [linked as “Disc Diff Geom, de Beauce,
Sen”, \070225\0610065.pdf]

These assertions are supported by Flanders’ book [72]. His first physical example,
occurring as early as page 16, employs the components of the electric field F; and the
magnetic field H; in a discussion of the Hodge star operator. This example is then
soon expanded on page 44 to the first full section treating a physical application,
titled “Maxwell’s Field Equations.”

The attractiveness of the exterior calculus is so overwhelming that a number of
electrical engineers have adopted it and related mathematics. I list below selected
publications in chronological order from this field.

1970: Balabasubramanian, Lynn, and Sen Gupta [7]

1981: Deshamps [58|

1984: Engl [66]; Kotiuga [T14]

1986: Baldomir [§]

1991: Bossavit [23]

1993: Baldomir and Hammond [0

1995: Warnick, Selfridge and Arnold [T95]

1997: Baldomir and Hammond [I0]; Warnick, Selfridge and Arnold [T96]

Warnick, Selfridge and Arnold’s boundary projection operator method [I95] is the
subject of our later analysis. These authors also report having taught electromag-
netic field theory to engineers using differential forms [T196].

References: Extensive bibliography on differential forms in electromagnetics as
of 1997 [197].

Some Caveats. 1 present a theory of the CGB exterior calculus but without the
algebraic rigor found, for example, in Bourbaki [29] or Shaw [I67]. Also, I do not
go into the further realms of differential geometry. This work treats only a simple
finite n-dimensional real affine space E™ with a fixed metric, a pseudo-Euclidean
space. But that should be sufficient for moving to later sophistications such as
manifolds, fiber bundles, connections, or sheaves.

Remark 3.1. If we drop the metric and generalize it to a differentiable manifold
our humble pseudo-Euclidean space becomes a setting for the topological develop-
ment of electromagnetic theory. In this treatment Maxwell’s equations are initially
expressed sans metric by integrals of differential forms. Metric effects are intro-
duced later through the Hodge star operator and the connection. Thus Maxwell’s
equations keep the same simple form throughout the theory. This is the approach
of the pioneering work of F. Kottler [TT5], Elie-Joseph Cartan 2], and David van
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Dantzig [182, [183] [[84] [185] [T86, 187, [[88]. For the most thoroughgoing exposition
of this kind, see the book Foundations of Classical Electrodynamics by Hehl and

Obukhov [8Y], or the shorter papers [87, RS, [00].

3.6. Background Reading. To understand the physical motivation of this pa-
per (and the application at its end) you should be familiar with the space-time
split (3+1)-dimensional Maxwellian theory of electromagnetism. We use only basic
electromagnetic theory, but as expressed in even (straight) and odd (twisted) dif-
ferential forms. Sources that provide this background, but without distinguishing
even from odd forms, are Baldomir and Hammer [10], Bamberg and Sternberg [TT],
Deshamps [58], and ADD Warner et al. REMARKING that they may sometimes
refer to odd forms.

Similar references that do respect the difference between even and odd forms
include Bossavit [23], [24], (suppl.)], Burke [83, 34], [35, B6l (suppl.)], Ingarden and
Jamiotkowski [T00], as well as Hehl and Obukhov’s comprehensive book mentioned
above [89]. Some related papers by Hehl et al. are [88], &7, [90)].

As is done in this paper, the depiction of geometric quantities is emphasized by
Schouten in his book Tensor Analysis for Physicists [I59]. Although he uses tensor
terminology and notation there rather than exterior products or differential forms,
Schouten provides archetypal illustrations of all the three-dimensional geometric
quantities we discuss: the even and odd kinds of scalars, vectors, bivectors, and
trivectors (these last three collectively termed p-vectors), and their dual counter-
parts. Burke’s [33] B4] wonderful drawings are particularly inspiring. See Salgado
[I54] for a quick visual reprise of the last two authors’ work. Jancewicz’ paper [105]
is notable for illustrating the exterior products between virtually all of the possible
nonzero combinations of scalars and p-vectors in three dimensions, both even and
odd. He also depicts some sums of even and odd p-vectors and the exterior prod-
ucts between many combinations of even and odd p-forms. In addition Jancewicz
gives examples of these geometric quantities from physics, including electrodynam-
ics. He recaps that paper in his next one [106], without discussing sums, but adds
an application to electrodynamics.'?

A primary reference on geometric algebra (Clifford algebra interpreted geomet-
rically) is the rather abstract treatment of Hestenes and Sobezyk in their book
Clifford Algebra to Geometric Calculus [97]. T found it useful to supplement that
work with Harke’s An Introduction to the Mathematics of the Space-Time Algebra
[84], taken from his thesis. Hestenes’ approach is more leisurely in the book New
Foundations for Classical Mechanics [93]. Conradt has authored a quick on-line
tour of geometric algebra [AT].

3.7. The Rest of the Intro. However, the initial, humble birth of this theory
does not preclude developments such as its use to resolve the controversy over the
derivation of the parity of (341)-dimensional electromagnetic quantities from their
4-dimensional spacetime expressions.

Boolean ring of sets

Let us call these objects odd vectors and forms.

Lounesto et al. [I19] introduced the concept of directed quantity.

1:‘}Also, in the paper [I08| Jancewicz gives more electrodynamic applications; while in another
paper [I07] he extends his geometric analysis of electrodynamics to four-dimensional spacetime.
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More insight into the boundary projection operator is in Karl Warnick’s Ph.D.
dissertation [T93].

There is an analogy to rational numbers and fraction bar notation. We write an
even or odd decomposable form as a pair of forms enclosed in a bracket denoting
equivalence classes of those pairs. This correlated grade bracket (CGB), splits into a
geometric sign (GS) form and an oriented measure (OM) form. The GS form itself
represents an equivalence class of ray and vector subspaces associated with semi-
oriented projective spaces. The OM form is just an ordinary form. The exterior
product of CGBs resolves into the GS product for the GS parts and the ordinary
exterior product for the OM parts. For the ray and vector subspaces corresponding
to the GS form the GS product corresponds to their oriented symmetric difference.
A nonassociative Clifford-like algebra, the orientation congruent (OC) algebra, is
modified to be the nonlinear, but associative, GS product.

This should be a citation with extra text. Let’s cite something now. See [I95]
Extra text]. Citing Bouma [26].

Warnick, Selfridge, and Arnold [I95] expediently modify a rule n A {(as, Qs)} =
{(a, )} that Burke ([34], pp. 192 f.) gives as required for pullback to commute
with the exterior differentiation. The version they use {(as, Q2s)} An = {(a,Q)}
does not commute with d but does allow them to write the boundary conditions
consistently for both twisted one- and two-forms (l~) and H in their application to
electromagnetism).

It is a wonderful fact that the geomnetric sign (or gsign for short) product which
we write as a diamond ¢ can be realized by the product of an algebra related to
Clifford algebra.
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4. DISCOVERING THE ORIENTATION CONGRUENT ALGEBRA

The White Rabbit put on his spectacles. “Where shall T begin,
please your Majesty?” he asked.
“Begin at the beginning,” the King said, gravely, “and go on till
you come to the end: then stop.”
Lewis Carroll [0, p. 182]

This section is a gentle, and thus, slow, discovery-based introduction to the ori-
entation congruent algebra roughly recapitulating my own path of successive (or
simultaneous) generalizations and refinements. I thereby attempt to ease the tran-
sition of the reader’s thinking from the familiar to the unfamiliar. Unfortunately,
precision and convenience necessitates the definition of a somewhat large number
of new terms and conventions. A general outline of this section follows.

We begin here with the ordered pair notation (da, Q) for odd forms that William
L. Burke used in an early paper [33] and then in his textbook Applied Differential
Geometry [34]. In this notation da is an even form and  is a top-dimensional
n-form. This ordered pair notation is the basis for our extremum representation of
both odd and even forms. Our discussion of the extremum representation gives us
the first, small taste of the orientation congruent algebra.

However, our explorations really become interesting when we consider Burke’s
description of a new notation for odd forms that he used in the later draft paper
Twisted Forms: Twisted Differential Forms as They Should Be [36]. We focus on an
intermediate expression that occurs near the end of his description. Unfortunately,
on the way to his final result, Burke passes through this expression without realizing
its significance. This expression is the basis for our correlated representation of both
odd and even forms.

The key to the rest of this paper lies in the algebraic relationships among the
exterior products of odd and even forms expressed in these two representations, the
correlated and extremum. By making some reasonable assumptions about these
algebraic relationships we intuit the laws of a new algebra. We dub this algebra the
orientation congruent (or OC) algebra. In Section [l we draw on the laws we have
found here to form a generators and relations axiom system for the OC algebra.

The three-dimensional space in which we do our initial explorations of the ori-
entation congruent algebra is ideal for this purpose, not only because the resulting
multiplication table is small enough to be comfortably displayed and comprehended
on one page, and not only because human intuition is naturally most familiar
with three dimensions, but also because some complications that arise in even-
dimensional spaces are absent. These complications will be addressed in a later
section.

SOME CONVENTIONS. Because they are easier to visualize, throughout this
section we prefer to work with odd and even multivectors rather than odd and
even multiforms. We write the set of vectors in a general, ordered basis for V" as
{e1,es,...e,}. However, unless otherwise noted, throughout this section n = 3.

We also adopt the compact multi-index notation'* for basis multivectors so that,
for example, e12 := e; Aes. In this example, we have left out the separating comma
in the sequence 1,2, but this omission will not create ambiguous expressions as long
as n < 9. It is also convenient to use upper case indices such as the I in e; to
symbolize a complete multi-index. Then we have, for example, e; = e if and only
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if I = 12. For more flexibility, we depart from the usual multi-index convention by
allowing multi-indices that are sequences of integers not necessarily ordered from
least to greatest.

In the bracket notations introduced below, we use a bold upper case omega 2
for the basis top-dimensional 3-vector associated with some general, ordered basis
for V3, so that (except when discussing the subalgebra OC,,(€2)) @ := eja3. We
take an wunderlined bold upper case omega £ to mean a generic top-dimensional
3-vector that does not necessarily have the same sense of orientation or weight as
the basis 3-vector . Thus 2 = ¢$2, for some ¢ € R®* = {z | z € Rand x # 0}
and we may write, for example, @, = ¢;2 and 2, = 22 for some, not necessarily
distinct, ¢1,co € R®. Similarly, it is also convenient to employ an underlined bold
numeral one 1 as a generic symbol for a nonzero scalar. Thus, for example, 1, = ¢;
and 1, = ¢y for some, not necessarily distinct, ¢, ca € R®.

4.1. From Ordered Pairs to Extremum Brackets. In Twisted Forms [30]
Burke writes the ordered pair (da, ) representing an odd differential form with
curly brackets as (da, {Q2}) to indicate that {Q} is an orientation as defined by the
equivalence class, called a ray, under the reduction rules

{da} = {kda} for all k > 0, and
—{da} = {-da}.
Burke uses the symbols do, d, and so on, from the beginning of the Greek alpha-
bet to indicate an exterior product of an indeterminate number of basis 1-forms.
However, the da here could actually be any simple (or decomposable) geometric
object. So let us switch notations and carry on with multivectors rather than dif-

ferential forms. The next two examples are taken from Burke’s Twisted Forms [36],
but translated into multivectors

(4.1)

Example 4.1. We can write the two orientations of two-dimension space V? as
{e12} and —{e12} = {—e12} = {ea1}.

Example 4.2. An example of an odd vector in V2 as written in this representation
is (e1, {e12}) = —(e1, {ea}).

An orientation under the reduction rules of Equations ([l has the character-
istics an equivalence class determined by the signum function sgn. The signum
function sgn: R — {—1,0, 1} is a surjection that maps its argument x to a number
representing the negative, neutral, or positive sign of x according to

-1, ifz<0,
sgnx = 0, ifzx=0,
1, ifz>0.

The signum function partitions its domain R into the preimages under sgn of each
one-element subset of {—1,0, 1} (the fibers under sgn of {—1}, {0}, and {1}) which
are the three familiar equivalence classes sgn=1[{—1}], sgn![{0}], and sgn=*[{1}] of
negative, zero, and positive real numbers. Similarly, the curly brackets partition the
set of all simple multivectors into one special equivalence class containing the zero
vector, the kernel of {e}, and a set of two (for n = 1) or an infinite number (for n >

14800, for example, Shaw [I67] pp. 326 f.].
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2) of other infinitely-large equivalence classes which can be grouped (noncanonically,
if n > 2) into two sets which are the “negatives” of each other.

Therefore, it is appropriate to write the orientation given by a top-dimensional
n-form or n-vector in the first position just as the sign, positive or negative, of
a real number proceeds it. Also, rather than indicating the ordered pair with
a pair of enclosing parentheses, and indicating the equivalence relation with curly
brackets, let us simply substitute a pair of enclosing double parentheses as in (e, o).
Combining these two conventions we have

(4.22) (Qer) = (er, {L)),

or, for a general multivector v,

(4.2b) (2,v) = (v, {2}).

Example 4.3. In this double parentheses notation the odd vector of V2 from
Example EE2 becomes (e12,e1) = (e1, {e12}).

TERMINOLOGICAL DIGRESSION

We assign the representation of odd forms written in this double parentheses
notation the full name, unbound extremum bracket. For convenience, we usually
write simply extremum bracket instead of unbound extremum bracket.

This representation is unbound because we may use either Q@ or —Q (or any
nonzero multiple of them) in the first position. Even though V" may have an
ordered basis which thus defines an orientation, an unbound representation is not
restricted by this fact.

This representation is extremum because the first position contains an n-vector
constructed from a n-dimensional base space. Such a multivector has the mazimum
possible degree (or grade in Clifford algebra jargon), namely, n. Later in this
Subsection, when we allow the first position to also contain scalars, the element
in that position may have the minimum possible grade, 0. In either case the first
position of an extremum bracket will always contain an element with an extremum
grade.

As is done with the terms Peano bracket and Dirac bracket, we use the singular,
bracket, for each set consisting of an enclosing pair of doubled parentheses and
their contents, and the plural, brackets, for more than one such set. We also employ
bracket as a generic name for not only the extremum bracket, but also the correlated
and native brackets introduced later. Each of these three are distinguished by their
different enclosing, doubled brackets.

Rather than using the awkward phrases the contents of the first (second) position,
let us adopt some short, meaningful, and—I hope—catchy names for them. Call
the element in the first position of any (extremum, correlated, or native) bracket,
which always has a role in determining an algebraic sign, the generalized sign,
or simply gsign. Call the element in the second position of any bracket, which
always has a role in determining a scalar magnitude, measure, or weight, the gauge.

END OF TERMINOLOGICAL DIGRESSION

We now consider the fundamental reduction rules for the extremum bracket. On
page 189 of Applied Differential Geometry [34] Burke gives one such rule for odd
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forms. We rewrite it using an extremum bracket containing multivectors as

(4.3) (2,v) = (-2, -v),
where v is a general multivector.

Equation {3) is example of an unbinding sign law. It is called this because it
allows the gsign to invert. In the extremum bracket for an odd multivector the
gsign is directly related to the n-vector €2 which determines an orientation for the
base space V™.

We need one more fundamental reduction rule for extremum brackets. This
next rule is called a migratory sign law because it describes what happens when a
negative sign moves from outside to inside the brackets and vice versa, but without
inverting the gsign:

(44) - ((vi)) = ((Qa —’U)),
where v is a general multivector.

We could now derive a complete set of reduction laws for the extremum bracket
from these two fundamental ones. However, we will wait until later after all three
brackets have been introduced, then derive a complete set of reduction laws for all
three in succession. Next, we look at the rules for calculating the exterior products
of odd and even multivectors.

On page 192 of Applied Differential Geometry [34] Burke gives a rule for the
odd form that results from the exterior product of an odd form and even form. We
rewrite it for multivectors in extremum brackets as

(4'5) ((Qv u)) ANV =uN ((Qv U)) = ((Qv un U))v

where u and v are general multivectors.

Curiously, I could not find an explicit expression for the exterior product of two
odd forms in Burke’s writings. Even Jancewicz, whose book chapter [T05], pp. 408
410] and paper [I06, pp. 252-255] treat such exterior (or outer) products in three
dimensions with detailed graphical and symbolic examples, does not provide one.
However, such an expression is also implicit in his writings. Bossavit, in his applied
differential geometry compendium [24, p. 13], does give an explicit expression for
the exterior product of two odd forms. He describes it in terms of the affine ratio
of n-forms. The equivalent extremum bracket expression for the exterior product
of two odd multivectors is

(4.6) (2, u) A (R24,v) =sgn(r)uAv for r € R such that Q; = rQ,,

and where u and v are general even multivectors.

The last case is the familiar exterior product of two even multivectors which,
following the conventions observed so far, could remain unchanged. However, we
advance by representing a general even multivector such as u by a compatible
extremum bracket which has a nonzero scalar rather than an n-vector gsign:

(4.7) w = (1,u),

where the relation symbol 22 is used to indicate representations that are isomorphic
to each other.
Now the exterior product of general even multivectors v and v becomes

(4.8) (L, u) A (2o, 0) = (Ly - 1, uAv) = sgn(ly - 1) uAv,

where the product denoted by a centered dot is ordinary real number multiplication.
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TABLE 4.1. The Multiplication Table for the Subalgebra OC, ()
Generated by € in the Orientation Congruent Algebra OC,, for
Any Odd n.

Before considering the remaining types of exterior products of odd and even
multivectors in this light, we pause for a remark. The two fundamental reduction
rules, the unbinding and migratory sign laws, given previously by Equations
and 4] for an odd multivector written as an extremum bracket with the maximum
grade n-vector gsign 2 also apply to an even multivector written as an extremum
bracket with the minimum grade nonzero scalar gsign 1.

Using the extremum bracket for even multivectors, we can also easily rewrite
Equation for the odd multivector that results from the exterior product of a
general odd and a general even multivector as:

(49) (2, u) A(L,0) = (1,u) A(L2y,0) = (2, -1, uAv) = (2y,uAv),
where, again, the product denoted by a centered dot is ordinary real number mul-
tiplication, and u, v are general even multivectors.

It is more difficult to rewrite the product of two general odd multivectors given by
Equation so that the even multivector is represented by an extremum bracket.
But this is so only because we wish to calculate the gsign of this product by multi-
plying the gsigns of the factors using some algebra. Such an algebra cannot have a
product that is equivalent to the multiplication of real numbers, although the real
numbers and their multiplication must be a subalgebra of it.

The necessary algebra turns out to be the orientation congruent algebra. How-
ever, at this point we do not need the OC algebra in its full generality. In fact,
we can define it in Table BTl by the simple multiplication table of the subalge-
bra OC,,(2) generated by € in the orientation congruent algebra OC,, for any odd
n. This subalgebra also has a simple analytic expression in terms of the Clifford
algebra Cl,,:

(4.10) wev=uov forall u,v € OC,(RQ).

Here we have followed Rota and Stein who, in their paper [T53], use the small circle
o to represent the Clifford (or circle) product. We have also followed Hestenes and
Sobczyk who, in their book [97, p. 5], use the dagger T to represent the reversion
(or main anti-automorphism [B1l p. 30]) operation of a Clifford algebra.

The subalgebra OC,, () is isomorphic to OC;, one of the two smallest nontrivial
orientation congruent algebras of a nondegenerate quadratic form. The other such
orientation congruent algebra is OC_; which, along with the Clifford algebra C¢_,
is isomorphic to the complex numbers C.

The subalgebra OC,,(2) and the orientation congruent algebra OC; are also both
isomorphic to another algebra which may not be as familiar as the complex numbers,
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namely, the double numbers. The double numbers are known by many names in
the literature. A very short introduction to them under the names double-ring and
Study numbers is found in Lounesto’s book [T23] pp. 23 f.]. See also the Wikipedia
article Split-complez number [201]. The relationship of the double numbers to
exterior and other products involving odd multivectors and multiforms is treated
in detail by Jancewicz’s book chapter and paper [105] [T06].

We can now express the exterior product of two general odd multivectors com-
pletely in extremum brackets:

(4.11) (24, u) A (2,v) = (21 © 2y, u Av) Zsgn(R2; © Dy) u v,

where u and v are general multivectors and the circled circle ® is the orientation
congruent product.

It is even more gratifying to see that using the orientation congruent algebra
we can neatly condense all of Equations (X)), (), and (I, expressing various
exterior products of general odd and even multivectors, into a single equation:

(4-12) uNv= ((Suvgu)) A ((vagv)) = ((Su © Sy, Gu N gv)) = sgn(su © Sv) Gu N Gu,

for general odd or even multivectors u = (Sy, gu) and v 2 (sy, gv))-

4.2. From William’s Twisted Notation to Correlated Brackets. In Twisted
Forms [36] Burke was attempting to overcome the limitations of the very successful
(da, Q) ordered pair notation for odd forms that he had used earlier by introducing,
“what I have found to be the best and simplest notation for twisted forms.” The
defects he objects to are implicit in the following paragraph taken from Applied
Differential Geometry [34] p. 184].

I will discuss twisted tensors in two ways: first, in terms of
their intrinsic properties, to emphasize that they are geometric ob-
jects and are as natural and fundamental as ordinary tensors; then
in terms of a representation involving ordinary tensors, which is
the easiest representation to manipulate although it unfortunately
makes them seem like subsidiary objects. A careful definition of
twisted tensors will appear only in the second discussion.

Here his “representation involving ordinary tensors” specialized to differential
forms refers to the (da, Q) notation for odd forms. The problem with it is twofold:
This notation does not represent the “intrinsic properties” of odd forms; and, be-
cause it is a composite of even forms, it makes odd forms “seem like subsidiary
objects.”

Graphically, he has a fine intrinsic (or native) representation of odd tensors. I
have traced it as far back as the original 1924 German language version of Schouten’s
Ricci Caleulus [I58] p. 22]. An example of an odd bivector in the native graph-
ical representation appears in Figure EETl(a). Burke exploits the native graphical
representation fully in his later publications |33 B4l B5, B6] along with graphical
representations of many other geometric quantities and their relationships. But
analytically, symbolically, he must fall back on the (da, ) or similar notation.

4.3. From Bracket Interconversions to the OC Algebra. Need to say: add
some specific examples from my old notes to motivate the idea of using a Clifford-
like algebra because the Clifford product is similar to the symmetric difference
operation on sets. But the sign needs to be modified.

Need to say: only scalars and blades make sense in correlated brackets.
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() (b)

correlated
representation

e

()
extremum
representation

native
representation

FIGURE 4.1. The Three Standard Graphical Representations of
an Odd Bivector in V3. Figure EEI(a) was slightly modified from
Schouten’s book [162] p. 55, Fig. 13]. Figures EEI(b) and ETlc) are
recomposed from parts of drawings taken from the same source.

TABLE 4.2. Examples of Six Symbolic Representations of Odd and
Even Multivectors in V3.

Appl. xtnd. illiam’
DIIEI Eé}rtams(sl. \¥£isteds Brackets
Geom. | Algebra Notation Extremum‘ Correlated ‘ Native
1 1 1 (1,1) (1,1) [1.1]
e e ey (1,e1) (e1,e1) [e1, e1]
b e e e (1, e2) (€2, e2) [e2, €]
o e e e (L,ei2) | (eiz,e12) | [e12,ei2]
e13 e13 €13 —(1,e31) | —(es1,e31) | —[es1,es1]
Q €123 Q (1,9) (€2, ) [, 9]
(1,9) r O (©2,1) (€, 1) [€2,1]
(e1,9) re| €23 (Q,e1) | (exs,er) | [e2s ei]
g (e2,9) res €31 (2,e2) | (esi,e2) | [esi,el]
d (812, Q) rei2 e3 ((Q, 912)) <<e3, e12>> [[93, 912]]
(e13,9) rers —e —(2,e31) | —(ez,e31) | —[e2, es]
(€2,Q) rei23 1 (2,9) (1, 2) [1, €]

Need to say: the two sign conventions in defining Clifford algebras.

Need to say: We use a Clifford algebra as a formal calculating device. Similar
to the way Kahler-Atiyah algebra is used.

We are about to define the product of the OC algebra, which we denote with a
circled circle as in a ® b, by listing the laws that we require it to satisfy. These
laws postulate the role of the OC product in

(1) interconverting the extremum bracket and the correlated bracket and
(2) calculating the exterior product of odd quantities.

The OC algebra is a Clifford-like algebra. We may define a Clifford-like algebra
roughly as an algebra that is derived from a Clifford algebra by giving a set of
rules that specify an additional sign (a factor of £1) to be attached to the Clifford
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product of two elements. This new product with a modified sign is the Clifford-
like product. Properties, such as associativity, of the original Clifford algebra may
be modified or annulled in any given Clifford-like algebra depending on the rule
determining the added sign. A definition of a Clifford-like algebra based on the
mazimally-graded version of a Clifford algebra may be found in Reference [T23] pp.
284 f.] or [R3]. Later, in Section VIII, we will define the OC algebra by giving a
sign rule of the type just discussed.

Our version of a Clifford-like algebra, the OC algebra inherits the scalar product
(a nondegenerate, symmetric, positive-definite bilinear form B(x,y) for x,y € V")
associated with the quadratic form used to define the Clifford algebra. But we are
not assuming that, in general this V™ comes to us with this or any other scaler
product. Indeed, any such scalar product that the V' of KV” may already have is
irrelevant to the manipulations we perform with the OC product because we use
the OC product only as a calculating tool operating on the gsign and gauge of
the correlated and extremum brackets. We apply a tool, the OC algebra, associated
with a metric to manipulate representations, the correlated and extremum brackets,
of a space, V of KV", that, in general, is nonmetric. In this Section and always
when used as a calculating tool in the sense just mentioned the OC algebra comes
equipped with the Euclidean metric. The results of this Section will lead us toward
a general axiomatic formulation of the OC algebra associated with a general, not
necessarily Euclidean, metric.

We assume that V3 has been assigned the basis {e,,e,,e,} with associated
basis trivector (volume multivector) Q = e;,. = e; A e, A e, where as before,
we may indicate the exterior product A by juxtaposition when convenient. Recall
that we use the correlated and extremum brackets as bases to represent directed
multivectors. Therefore both positions in either form may only contain a single
even basis multivector, the unit scalar 1, or the negative of these, but not general
linear combinations formed from the aforementioned. Throughout the following
these basis multivectors are symbolized by uppercase italic letters as, for example,
A.

The last task before we begin to derive rules of calculation in the OC algebra
is to define two functions applicable to single basis multivectors or their negatives.
Let %" be the set of 2™ basis multivectors for AV™.

In the following the index I4 in ey, is a multi-index, so that, for example in
three dimensions /4 might expand to 12, thus giving e;, = ej2. We define the sign
function relative to a set of basis multivectors %", written as sgnga A, or simply
sgn A when it is clear what function and basis is meant, so that, sgngs A = A for
all A such that A = ey, with A= =+1 and e;, € #".

Complementarily, we define the absolute value relative to a set of basis multi-
vectors 9B, written |A|gn, or simply |A| when it is clear what function and basis
is meant, so that, |A|g~ = ey, for all A such that A = ey, with A = +1 and
er, € B

Now we are ready to derive some fundamental laws for the OC product. Consider
first the following rules that we postulate for interconversion between the extremum
and correlated brackets.

We perform the following cyclic interconversion of brackets,

extremum — correlated — extremum,

to obtain the results in Table 24l
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TABLE 4.3. Interconversion Rules for Extremum and Correlated Bracket

|| Extremum — Correlated | Correlated — Extremum
Even || (1,A) —» (A®1,A) = (A, A) (C,D) — (C®D,D)
Odd || (,4) — (A Q,A) (C,D) — (C®D,D)

TABLE 4.4. Cyclic Interconversion of Extremum and Correlated Brackets

|| Extremum —  Correlated — Extremum
Even (1,4) - (Ae1,A) — (Al AA)="--
Odd (©,4) - (AeQ,A4) — (AQ) A A)=---

Extremum
Even || -+ = (1,4)
Odd || - =((AeQ)ANA A) =(Q,A)

The rules of Table and the results of Table EE4] imply the following laws for
the orientation congruent product:

(4.13a) A®1=AN1=A, Rightidentity

(4.13b) A®A=1, Selfinverse

(4.13¢) (A Q) A=Q, Left coinverse

(4.13d) (A Q)N A=Q. Left exterior coinverse

Consider next the following rules for exterior products between odd and even
multivectors expressed in extremum and correlated brackets. The last two bracket
expressions of the following rules are related by the interconversion rules:

Ext. (2,4) A (2,B) = (o QAN B) — (1,AAB),
Cor. (A@QA)N(BeQ,B)=(A0Q2)©(BeRN),ANB)=(AANB,AN\B).

These rules imply the following laws for the orientation congruent product where

part (b) of Equation ([ET4)) is the extension of part (a) to include the case AAB = 0:

ANB, ifANB#0 Right Q- 1 t

(414) (AoQ)e(Bof) — (a) , i # 0, ig .comp emen
(b) A® B, always. cancellation

Finally, consider the following pairs of rules for exterior products between odd
and even multivectors (and vice-versa) expressed in extremum and correlated brack-
ets. Again, the last two bracket expressions in each pair of the following rules are
related by the interconversion rules:

Ext. ((QvA)) A ((LB)) = ((QvA/\B))v
Cor. (A®QA)A (B, B) = ((A®Q)©B,AAB) = ((AAB)®Q, AN B),

Ext. (1, A) A (2, B)
Cor. (A, A)A(B®Q,B) = (A (BoQ),AAB)

(22,AnB),
{((ANB)® Q, AN B).
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These rules imply the following laws for the orientation congruent product where
the combination of parts (a) and (d) of Equation ([IH) and that of parts (b) and
(d) are the extensions of the combination of parts (a) and (c) of Equation [{IH)
and that of parts (b) and (c), respectively:

Generalized commutativity of right €2-complementation
(@(A@M@B} {@(AAm@n,ﬁAAB¢Q

(4.15) (b) A® (B®Q) (d) (A®@B)oQ, always.

Let us introduce a more compact notation for the left and right €2-complements
using a prefixed or postfixed superscript uppercase omega as
(4.16) YU .=Q oA, Left Q-complementation
' A% = A® Q. Right Q-complementation
We call these operations left and right counit complementation, or just left and
right complementation for short. To reduce the clutter of parentheses we give them
precedence over orientation congruent, Clifford, and exterior product multiplica-
tions.

Now we may gather together the fundamental laws of Equations (I3l EET4, and
ET3) and rewrite them using this notation as follows:

(ET3ar) A®1=A, Right identity
&30 A®A=1, Selfinverse

E3T) A?© A=Q, Left coinverse

ET3d) AR A A =Q; Left exterior coinverse

@I A% @ B — (a) ANB, if ANB#0, Right Q-complement
B (b) A® B, always; cancellation,
1)
(a) A%©B

(b) A® B®

(c) (AANB)®, if ANB#0,

(d) (A® B)%, always.

Generalized commu-
} = { tativity of right

Q2-complementation

In the multiplication tables for C¢,, and OC,, that are presented as Tables
and EE6l we have adopted the convention of symbolizing the basis n-vector es. ., :=
e; ANea A--- Aey, by I when it is involved in a Clifford product of some Clifford
algebra derived from an n-dimensional base space, or by €2 when it is involved in an
orientation congruent product of some orientation congruent algebra derived from
an odd-dimensional base space.
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TABLE 4.5. The Multiplication Table for the Clifford Algebra C/s.
The factors are in reflected, complementary grade order with in-
dices in orientation congruent order.

TABLE 4.6. The Multiplication Table for the Orientation Congru-
ent Algebra OCs. The factors and indices are ordered as in Table
above. Red cell entries are signed oppositely to those in Table
4.0
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5. AN AXIOM SYSTEM FOR THE ORIENTATION CONGRUENT ALGEBRA

Grassmann’s one great contribution to mathematics is ... the def-
inition of exterior algebra. He gave his entire life to understanding
and developing this definition. . ..

Evil tongues whispered that there was really nothing new in
Grassmann’s algebra.... The standard objection was ..., “What
can you prove with exterior algebra that you cannot prove without
it?” Whenever you hear this question ... you are likely to be in
the presence of something important. ... A proper retort might be:
“You are right. There is nothing in yesterday’s mathematics that
you can prove with exterior algebra that could not also be proved
without it. Exterior algebra is not meant to prove old facts, it is
meant to disclose a new world. Disclosing new worlds is as worth-
while a mathematical enterprise as proving old conjectures.”

Gian-Carlo Rota [I52] pp. 46-48]

In this section we first discuss the nondegenerate quadratic form @), ;, defining
terms and notations for it, and then, later, the two algebras of our interest as-
sociated with it. We then present a deductive foundation for the Clifford algebra
Cly,q of a nondegenerate quadratic form @, , in terms of generators of and relations
on its elements (a GR axiom system for short). Next we give a similar axiomatic
formulation for the orientation congruent algebra OC, , that is derived from the
one for the corresponding Clifford algebra C/, , by modifying two of its axioms
and adding two new axioms. Although, in this section, we give only GR axiom
sets, in this section’s penultimate subsection we discuss some alternative axiomatic
approaches. Finally, the last subsection of this section presents the multiplication
tables for some low order Clifford and orientation congruent algebras.

5.1. Geometric, Clifford, and Orientation Congruent Algebras. Hestenes,
Li, and Rockwood in their book contribution [96, p. 2] give a similar, but stream-
lined treatment of geometric algebra.

What is geometric algebra as practiced by David Hestenes and his colleges that
aims to be a “universal geometric algebra” and “a unified language for mathemat-
ics and physics” [03] [02] 95]7 Briefly, geometric algebra is Hestenes presentation
of a Kéhler-Atiyah algebra together with a meta-algebraical, usually geometric,
interpretation.

What is geometric algebra a la Hestenes? Geometric algebra is the Kihler-
Atiyah algebra [20, p. 86], [78], [79], [T45] pp. 5597 f.] interpreted geometrically.
In fact, many different geometric interpretations of geometric algebra have been
explored in the literature. Intuitively, the K&hler-Atiyah algebra is a kind of ab-
stract, basis-independent, super matrix algebra. Matrix algebra represents the lin-
ear transformations of linear algebra in a basis. A linear transformation on a linear
space is an endomorphism—a map from a set to itself. Linear algebra treats vector
spaces. Multilinear algebra treats tensor products of vector spaces, their tensor
algebras, and the abstract algebras derived from them such as the exterior algebra
and Clifford algebra. The set of elements of Clifford algebra in their operator form
is isomorphic to the set of all linear endomorphisms on the linear space of exterior
algebra. Geometric algebra as a Kéahler-Atiyah algebra has a metric associated with
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its Clifford algebra part. If the background metric of geometric algebra is taken as
the Euclidean one in an orthonormal basis, interpretational metrics may be treated
as WHAT see Hestenes page.

As practiced by David Hestenes and his followers geometric algebra is a way to
compute as with matrices but without necessarily invoking arrays of numbers as the
expression of objects in a coordinate basis. Just as a production company provides
a troupe of stock actors ready to assume any role according to a playwright’s script,
matrix theory provides us with a matrices ready to model all sorts of mathematical
objects such as linear transformations bilinear forms on a vector space (metrics),
tensors, or the points, lines, and planes of Euclidean, affine, or projective geometry,
to name just a few, all according to our ingenuity and imagination.

Hestenes’ drive to make geometric algebra and calculus a universal language
for mathematics and physics rivals that of the utopian constructors of Esperanto.
Unfortunately, his efforts suffer the same ill effects of scientific, rather than general,
linguistic parochialism. Another disincentive to adopting the powerful techniques
of geometric algebra and calculus is that they are subtly complicated. The meaning
of a word in Chinese depends not only on its basic sound but on the nuances of
tonal inflection. Similarly, in geometric algebra the meaning of a given form is
chosen from among many possible interpretations.

Indeed, in this work we do not fully embrace the geometric algebra and calculus of
Hestenes’ expansive vision. In particular, we work here not with geometric calculus,
but with classical differential geometry. However, we do borrow geometric algebra’s
vocabulary, its axiomatic foundations, its general results, and, its particular results
as applied to projective geometry.

We formulate the orientation congruent algebra by modifying the axiomatic foun-
dation of geometric algebra given by Hestenes and Sobezyk [97]. We choose this
axiomatic basis for the OC algebra for three reasons. First, the Hestenes-Sobczyk
axioms start from the familiar concept of a vector space. Second, by changing a
few key axioms the Hestenes-Sobczyk formulation of geometric algebra can be eas-
ily modified to define the orientation congruent algebra, thus allowing the parallel
development of both algebras. This is possible, in part, because like the geometric
algebra, which is a Kéhler-Atiyah algebra containing both the Clifford product and
the outer (exterior) product, the OC algebra is a generalized Kéhler-Atiyah algebra
containing both the orientation congruent product and the outer product. Third,
the modified Hestenes-Sobczyk axioms permit an independent characterization of
the orientation congruent algebra as a Clifford-like algebra in Section [ using the
sign factor function o. Such an independent characterization is not possible using
the other common definition of a Clifford algebra as the quotient of an abstract
tensor algebra by an ideal because the tensor algebra is inherently associative and
the orientation congruent algebra is nonassociative. I know of only one other route
to the OC algebra that is independent of its Clifford-likeness. However, that route
requires the still more abstract concept of a Hopf algebra which is unsuitable for
this introductory paper.

Because some of the conceptual bases of the Clifford and orientation congru-
ent algebras differ sharply, we define these two algebras by separate but parallel
axiom systems. Most of the axioms in the two systems are identical and are not
repeated. However, in this parallel presentation, the key axioms differing for the
two algebras are more easily compared and contrasted. In the end, though, a final
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axiom set allows the two algebras to merge into a generalized Kéhler-Atiyah algebra
containing three products: the Clifford, orientation congruent, and outer (exterior)
product. For the most part to avoid the ungainly phrase Clifford-orientation con-
gruent algebra, we simply refer to this merged algebra by the abbreviated name CO
algebra.

The initial Hestenes-Sobczyk axioms describe a Kéhler-Atiyah algebra over a
base space V' := (Cl, 4)1 of 1-vectors without defining the concept of the dimen-
sion n of V, but with the quadratic form @ associated with V' being Euclidean,
ie. Q(v) > 0 for all v # 0 € V. Hestenes and Sobezyk later [97, pp. 16-20]
define the dimension n by introducing a top-dimensional unit-magnitude n-blade,
the pseudoscalar I, through the implicit axiom that there exists a unit-magnitude
n-blade I, such that n > 1 (since vectors exist) and

V={v|vAl, =0}

Then the dimension n (possibly infinite) of the algebra’s base space V is defined
to be the grade n of I,. Also the general concept of a not necessarily Euclidean
(pseudo-Euclidean) metric is introduced by Hestenes and Sobczyk as either “built
into” V through the geometric algebra equivalent of Definitions BTl and below
for the signature (p,q), n = p + ¢, of the quadratic form @ associated with V' [07]
pp. 41-43, 102-111], or, more powerfully, as an “auxiliary” linear transformation
and its equivalent bilinear form and modified inner product [97, pp. 96-102].

In contrast to the approach of Hestenes and Sobczyk, it is more convenient for us
to use axioms for the Clifford and orientation congruent algebras that are modified
versions of theirs, so that, from the start, our axioms define the base vector space
to have the finite dimension, n. (Although, for the orientation congruent algebra, if
n is even, we have to consider the extension of the base space dimension to n + 1.)
We do this because, in this paper, we use the orientation congruent algebra to
describe only the oriented vector subspaces of a vector space with a fized, finite
dimension n (extensible to n + 1, if n is even). For unoriented subspaces the
analogous description is known to mathematicians as the Pliicker embedding [85]
ch. 11]. By representing vector spaces as exterior products of vectors, the Pliicker
embedding allows us to calculate with vector spaces—a technique first employed
by Hermann Giinther Grassmann in his pioneering works of the mid-19th century

B0, &1

5.2. The Nondegenerate Quadratic Form @, , and Associated Algebras.
Let us define the parallel relationships of the notations @, @, ,, and Q,,; C{(Q),
Cly, q, and Cl,,; and OC(Q), OC, 4, and OC,,. Here n, p, and ¢ are integers such that
n > 1,and p,q > 0 with p > 1 or ¢ > 1. First, we need the notions of a general
quadratic form @Q and its associated symmetric bilinear form Bg.*

Definition 5.1 (Quadratic Form and Associated Symmetric Bilinear Form).
This definition is taken from Fauser [67, p. 3]. A quadratic form on a vector space

150 map with two arguments such that B: U x V. — W, where U, V, and W are vector
spaces over R, is said to be bilinear if and only if it is linear in both of its arguments. That is,
Bl@+y,2) = B(z,2) + B(y,2), B(z,y+2) = B(a,y) + B(x, 2), and Blaw, By) = af B(a,y) for
all o,8 € R. The form part of its name means that for Bg we have W = R in the definition
of bilinearity just given. Also the word symmetric implies that U = V| since it means that

BQ((E, y) = BQ(y7 {E)



62 DIANE G. DEMERS

V™ over R is a map : V™ — R such that

(5.1a) Q(ar) = a*Q(x) for all a € R and x € V, and
(1) Bolwy) = 5(Q +y) ~ Q) ~ Q) for all 2,y € V™,

where Bg: V" x V™ — R is the symmetric bilinear form associated with @ by the
polarization relation given by equation (EIH).

Definition 5.2 (Nondegenerate Quadratic Form of Signature (p, q)).

A quadratic form for the n-dimensional vector space V™ such that Q(z) # 0
for all x € V™ is said to be nondegenerate. Let @) be a nondegenerate qua-
dratic form on V". If there exists an indexed set of pairwise orthogonal vectors
{e1,...,ep,€pi1,...,€p14 } for V™" (that is, Bo(e’,e’) = 0 for all i # j) such that
for all e;

Q(e;) >0, for 1<i<p, and
Qe;) <0, for p+1<i<p+gq=n,

we say that Q is of signature'® (p, q) and we may write Q.4 to signify this. If ¢ =0,
we have p = n; whereupon we say @ is of positive signature n and we may write
@,, to indicate it. Also, if p = 0, we have ¢ = n; whereupon we say () is of negative
signature n and we may write @ ,, to indicate that.

We may also represent that a nondegenerate quadratic form @, ,, @,,, or Qg ,,
exists for the vector space V™ by writing VP4, V™0 or VO respectively.!” We
symbolize the corresponding Clifford algebras by C¢, 4, Cl,, and Cly,; and the
corresponding orientation congruent algebras by OC, 4, OC,, and OCo.,,.*® When
discussing the Clifford or orientation congruent algebra of a general quadratic form
@, or when the signature (p, q) of @ is understood from context, we may also write
Cl(Q) or OC(Q), respectively. And when referring to the nondegenerate quadratic
form of signature (p,q) associated with the Clifford algebra C¢, 4, we will usually
write simply @ instead of @, ,.

5.3. MHS Axioms for the Clifford Algebra Cl,,. Before we give a set of
axioms for the orientation congruent algebra of a quadratic form, OC, ,, we first
introduce a set of axioms for the Clifford algebra of a quadratic form, C/,, 4, adapted
from Hestenes and Sobczyk’s presentation. This modified Hestenes-Sobczyk (MHS)
axiom set for C/,, , comprises a long list of 26 axioms divided into seven sets. Later in
this section, by altering this axiomatic formulation for C¢, ,, we obtain a modified
Hestenes-Sobezyk axiom set for OCp , which comprises an even longer list of 28
axioms divided into eight sets. A final set of two axioms are provided which allow
the outer (exterior), Clifford, and orientation congruent products to coexist in an
extended Kahler-Atiyah algebra which we call the Clifford-orientation congruent
algebra of a quadratic form, CO, 4.

16T his (p, q) is, of course, the physicist’s signature, not s = p — ¢, the mathematician’s version.

17Note that we do not use V™ as a brief form of V™0 as we do for the corresponding notations
for the Clifford and orientation congruent algebras, because we reserve V" to indicate the vector
space of dimension n that does not necessarily have a quadratic form associated with it.

18The trivial algebras Clp,0 and OCy,o also exist, but are not associated with a quadratic form
since they are isomorphic with R.
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These axioms for Cl,, were adapted primarily from those of Hestenes and
Sobezyk’s book [97, pp. 3 fI.] and Perwass’s publications [T39, pp. 12 f.], [T40,
pp. 22-24]. Shaw’s book [I66, pp. 6,9] was also consulted for the vector space prop-
erties postulated in Axiom Set [ The style and typography in which these axioms
are presented is modeled after that used by Perwass [ibid.]. However, differing from
Hestenes and Sobczyk’s treatment, ours is somewhat simplified in the following
ways:

(1) we construct one algebra with a base 1-vector space V?-? that has a fixed,
finite dimension n = p+ ¢ large enough to contain all subspaces of interest,
rather than construct an infinite lattice of nested subalgebras, one for each
pair of nonnegative integers (p, ¢) at least one of which is positive;

(2) we introduce the base space V"¢ and its associated quadratic form @, ,
first independent of their derivation from the axioms;

(3) we restrict this quadratic form Q.4 to be nondegenerate.

Following the conventions of Hestenes and Sobczyk, hereafter the term multivec-
tor is used for any (not necessarily homogeneous) element of the Clifford algebra
Clp,q (or the orientation congruent algebra OC,, 4) including those containing a scalar
or vector component, the term grade (of a multivector) is used for the concept sim-
ilar to the one usually referred to as degree, step, or rank, and a superscript dagger,
as in AT, is used to represent the reversion (or main anti-automorphism |51}, p. 30])
operation of a Clifford algebra.

Although Hestenes and Sobczyk, as well as many other authors, indicate Clifford
multiplication by juxtaposition, we prefer to distinguish between it and orientation
congruent multiplication by giving each its own symbol: an open dot (a very small
circle) o for the Clifford product and a circled open dot ® for the orientation
congruent product. Our use of an open dot for the Clifford product follows the
practice of Rota and Stein in their paper [T53], where they also use the term circle
product.

For some comments on the nature of the geometric algebra and calculus practiced
by Hestenes and his followers see the reviews by R. J. Plymen [I41] and A. Crumey-
rolle B0 of Clifford Algebra to Geometric Calculus. More insight is found in the
paper by Aragén et al. [3] and the review of it by W. A. Rodrigues, Jr. [I49]. The
perspective of the computer graphics researcher applying geometric algebra tech-
niques for geometric modeling is given by Leo Dorst’s concise Geometric Algebra
FAQ [62].

See Lounesto’s book [123] pp. 190-192] or his book chapter [124, pp. 26-27].
Chapters 14, 21, and 22 of Lounesto’s book [T23] give several other definitions of a
Clifford algebra.

Applied works commonly use a long set of axioms similar to those we give next to
define the Clifford algebra C/,, 4; however, usually their authors do not also mention
the mathematically sophisticated refinement of condition (3).

For a more detailed discussion of universality under the name unique factoriza-
tion property, and in the context of the tensor product of vector spaces, see Shaw
[T67, pp. 274-277]. For a specifically Clifford algebraic discussion see Gilbert and
Murray’s book [77, pp. 12-17] or the brief treatment in Perwass’s thesis [139, p. 18].
For the related category theoretic formulation of Clifford algebras see Lounesto’s
book chapter [T24] pp. 26-29]. Lastly, for readers of German, the discussion in
Jung’s thesis [T09, app. A.4] appears to be good.
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For reference and completeness we next give a modified Hestenes-Sobczyk ax-
iomatic definition for the Clifford algebra of a nondegenerate quadratic form Cl, 4
in a list of 26 axioms divided into seven sets.

This list starts with two sets of axioms which are the standard vector space
axioms; however, now the vector space contains the multivectors in Cf, , rather
than just the vectors in the base space V™. The first set of axioms given by Axiom
Set [ defines the properties of multivector addition; the second set given by Axiom
Set [l the properties of two-sided scalar multiplication. Axiom Sets [T through VTl
add the last 15 axioms that define the algebraic properties of Clifford multiplication.

Axiom [MI2A below assumes that R C Cl, 4; that is, that scalars are multivectors.
Similarly, Axiom [VIT2] assumes that V" C Cl,, ; that is, that vectors are multivec-
tors. However, in a more careful interpretation, one says that R and V" are present
in Cl, 4 only as isomorphic images. The approach adopted here of identifying R
and V" with their images in Cf, , creates redundancies in our axiom system that
are discussed in detail in the footnotes. There we see that most of the axioms in
the second set are subsumed and mirrored in those of the third set; scalar multipli-
cation of multivectors will have become, after all, just Clifford multiplication by a
scalar, and so, must be consistent with it.

The first set of axioms defines the set of multivectors, C/,, ,, as an abelian group
under the operation of multivector addition. The group operation is written as an
addition sign +.

Axiom Set 1. Vector Space Addition of Multivectors.

For all Clifford algebras Cl,, 4, there exists a binary operation called multivector
addition, symbolized by the addition sign +, and which is said to produce the sum
of two multivectors, such that for all A, B,C € Cl, ,

(I1) A+ BeCl,y,, Closure of multivector addition

(I12) A+ B=B+A, Commutativity of multivector addition
(I3) (A+B)+C=A+(B+C), Associativity of multivector addition
(I4) A+0=A, and Existence of an identity

(I5) A+ (-A)=0. Existence of an inverse'?

In the second axiom set and below the elements of R are a special group of
multivectors called scalars. We usually denote scalars by lower case Greek letters.

Axiom Set II. Vector Space Two-Sided Scalar Multiplication of Multivectors.
For all Clifford algebras Cl,, 4, there exists a special subset of multivectors R C C/), 4,
the set of scalars, and a binary operation R x Cl,, ;, — Clp, 4 and Clp 4 X R — Cl) 4

called scalar multiplication, symbolized by juxtaposition, such that for all A, B €
Clyqand o, B € R

(I1.1) aA, Aa € Cly 4, Closure of scalar multiplication

(I1.2) Aa = aA, Commutativity of scalar multiplication?
(I1.3) (af)A = a(BA), Associativity of left scalar multiplication
(I1.4) 1A= A, and Existence of a left identity

19This axiom is derivable from others in the two sets of vector space axioms and the field
properties of R if we define —A to be the result of the scalar multiplication (—1)A.
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(a+ P)A =aA+ BA, Distributivity of left scalar multiplication

(IL5) a(A+ B) =aA+ aB. over scalar and multivector addition

Definition 5.3 (Algebra over R).

An algebra over R is a vector space W together with a bilinear?! binary operation,
m, called the algebra’s product or multiplication, such that m: W x W — W as
m: (z,y) — m(x,y). Usually m(z,y) is written in infixed notation as = @ y, where
(M) is usually some more abstract symbol such as o. Sometimes a product is simply
indicated by juxtaposing the multiplicands as in x y.

Adding the third set of axioms turns the vector space C/,, 4 into a general (nonas-
sociative) algebra over R. This algebra inherits 1 from the vector space as its unit
or identity element by Axioms [[L4 and [IT2

Axiom Set III. The Cl,, Product: General Properties.
For all Clifford algebras Cl, ,, there exists an algebraic product called Clifford

multiplication, symbolized by an open dot o, such that for all A, B,C € C¢l, 4 and
alla e R

(II.1)  AoBeCl,, Closure of Clifford multiplication
aoA=aA, Equality with left and right

(II1.2) Aoa = Aa, and scalar multiplication??

(111.3) Ao(B+C)=AoB+AoC, Left and right distributivity over

AB+C)oA=BoA+CoA.  multivector addition?

Implicit in the expressions of Axiom Set [TIlis the usual parentheses-sparing con-
vention of performing Clifford multiplications before performing multivector addi-
tions. Specifically, in Axiom L3 this operator precedence rule is applied on the
right sides of the equations.

The next set of axioms, the fourth, defines the fundamental properties of the
grade projection operator in preparation for Axiom Sets [Vl and [Vl

Axiom Set IV. Grade Projection of Multivectors.

For all Clifford algebras C/, ,, there exists a projective operator on multivectors
called grade projection, symbolized by angular brackets with an integer subscript as
(A),, that selects the r-grade part of multivectors and such that for all A, B € C¢,, 4,
alla e R, and all r,s € Z

(IV.1)  (A), €Clp,, Closure of grade projection

208ince R is a field, and thus has a commutative multiplication, it is not necessary to assume
the existence of right scalar multiplication Aa in Axiom [Tl Axiom may then be taken as a
definition of right scalar multiplication as Aa := aA. See Shaw’s Remark (b) [I66] p. 9].

215 binary operation is bilinear if and only if it is linear in both of its arguments. Bilinearity
implies distributivity of the product over vector space addition. Nevertheless, we explicitly include
the distributive property in the axioms. For a more general definition of bilinearity see Footnote
=

22As mentioned above, we have assumed that scalars are multivectors R C Clp.q. Therefore,
the properties of scalar multiplication given in Axiom Set [l are partially subsumed under those
of Clifford multiplication given in this axiom set. In particular, this axiom and the one above it
make Axiom [[[LJ] redundant and it may be dropped.

23 Axiom LA the distributivity of Clifford multiplication, with the help of Axiom DL implies
the (now redundant) Axiom the distributivity of left scalar multiplication.
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(Iv.2) (A), =0, ifr <0, Negative nullity of grade projection
(Iv.3)  (A+ B), = (A), + (B)r, Additive linearity of grade projection

Left multiplicative linearity of

(V4) - {ad)r = afd), grade projection

(IV.5)  ((A)r), = (4A)r, Projectivity of grade projection

(IV.6)  ((A),), =0, if r#s,and  Orthogonality of grade projection®!
)

A= Z (A),. Grade decomposability of multivectors

The fifth set of axioms defines the grade of scalars as 0. It also defines a subset
of the algebra’s multivectors that is the underlying vector space of the algebra—the
algebra’s base space V", where n = p 4+ g. The base space is a graded vector space
166, pp. 10 f.] which is homogeneous, that is, all its elements, the vectors, have the
same grade, which, in this case, is 1. We usually write vectors as bold unitalicized
lower case letters as in a.

Axiom Set V. Grades of Scalars and Vectors.
For all Clifford algebras C/,, 4, the grade projection of multivectors is such that

(V.1) forall @ € R, (a)g = a, and Scalars have grade 0
Vo there exists a set V" € Cl, 4 Vectors (of the base space V")
( such that for alla € V", (a); =a.  exist as multivectors with grade 1

Before presenting the next axiom set we pause to make some fundamental defi-
nitions which are used throughout the sequel.

Definition 5.4 (Clifford r-Blade and Clifford r-Vector).

(1) A Clifford r-blade is Clifford multivector, which we usually symbolize with
a bold upper case unitalicized letter as in A, such that it can be expressed
as a freely-parenthesized Clifford multiproduct of r pairwise anticommuting
vectors for some integer 2 < r <n. Thatis, A=aj;o---0a;0---0a,, with
all groupings into binary products equal to each other, and a;ca; = —a;oa;
for all ¢ # j. Note that we have used the convention that an unparenthe-
sized multiproduct represents all parenthesizations of the multiproduct into
binary products. Sometimes we write a Clifford r-blade with a subscript
to indicate its grade as in A,.. We write the set of all Clifford blades of the
Clifford algebra C¢, , as CB{, , and the set of all Clifford r-blades of C¢, 4
as CB(,, .

(2) We also define 1-blade to mean vector, and 0-blade to mean scalar. We
interpret a multiproduct expression such as H1<i<r a; =a;o---0a;0---0a,
to be the single vector a;, when r = 1, and some scalar a, when r = 0.

(3) For any integer 0 < r < n all zero-magnitude r-blades are considered to

p,q

be equivalent. Thus, 0 represents a blade of indeterminate grade, 0 € Bf;yq
for all 0 < r < n [I66, pp. 10-11], as well as indeterminate direction [26]
pp. 296-297].

(4) A Clifford r-vector, also called a homogeneous Clifford multivector of grade
r, is defined as a linear combination of Clifford r-blades. We often write a

24This axiom is due to Aragén et al. [3].
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Clifford r-vector as an upper case italic letter with an attached subscript
that indicates its grade as in A,.

(5) The set or vector space of all Clifford r-vectors in the Clifford algebra
Cly,q may be written with a superscript r as Cf} .. Extending the grade
projection operator to sets or vector spaces of multivectors in a natural
way, we may also write Cl; . = (Clp4),. Then, the vector space of all

multivectors in C/,, ; may be written as the direct sum of the vector spaces
of all grades of multivectors: Cl), , = @ Cl}, , = P (Cly ), Finally, the set

T T
or vector space of all (1-)vectors may alternatively be written as V" = Cl}, .

The sixth set of axioms defines the grade of blades. It also makes the blades of the
Clifford algebra C/, 4 its fundamental additive and multiplicative building blocks.
Our use of the word grade here is somewhat at odds with its general use because,
although we have assigned a grade to blades, it is the Z-grade, isomorphic to the
additive group of Z, for the exterior algebra over V'™, not the Zs-grade, isomorphic
to the Zy additive group, which is the natural one for multivectors under Clifford
multiplication.

This apparent discrepancy is resolved when we see that our generators and re-
lations axiomatic formulation of Clifford algebras is equivalent to a Ké&hler-Atiyah
algebra which allows us to use the set of all blades B¢, ,, as isomorphic to the
Grassmann algebra A\ V™. In any given basis # the set of all basis blades Blg is
isomorphic to A 4, the set of all exterior products in canonical form formed from
the basis vectors, and allows us to calculate Clifford products in terms of exterior
products. However, the isomorphism between Cl,, , and A V™ is only a vector space
isomorphism, not an algebra isomorphism [B1l, p. 45]. Oziewicz has created a more
elaborate theory under the name Clifford algebras of multivectors that explains this

discrepancy [136], 68, pp. 25-27].

Axiom Set VI. The Cl, , Product: r-Blade and r-Vector Properties.
For all Clifford algebras C¢, 4, Clifford multiplication is such that for all A € C¢, 4
and r € Z

(VL1) < H ai> = H a;, for alla; € V"

1<i<r 1<i<r r-Blades have grade r

such that a;oa; = —ajoa; if i # j, and

there exists an 1 < m € Z and a

VLo set of m r-blades {B,} such that Blade decomposability of
(V1.2) (A), = Z B. homogeneous multivectors
1<i<m

Next, we define the Clifford outer product of multivectors in terms of the Clif-
ford algebra product. This definition interrupts the flow of the Clifford algebra
axioms. However, in the axiom system for the orientation congruent algebra we
are forced to introduce the corresponding definition for the outer product of multi-
vectors before moving to the next axiom set. Therefore, I place the Clifford outer
product definition here so that the two axiom systems are developed in parallel. T
do not, however, repeat it as an orientation congruent axiom because the required
modifications are trivial.
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Definition 5.5 (Clifford Algebra Outer Product of Multivectors).

The Clifford outer product of A, and Bg, written with a wedge Ao, is defined for
any Clifford r-vector and s-vector A,, B, € Cl, 4 as the (r + s)-grade part of their
Clifford product

(52) Ar No Bs = <Ar o Bs>r+s-

The Clifford outer product of general, not necessarily homogeneous, Clifford mul-
tivectors A, B € OC,, 4 is then defined by

(5.3) ANe B:=Y (A)y Ao (B)e = (A)y Ao B=>_ AN, (B)..

T8 T

Remark 5.6. In the above definition we have used the wedge A, which is the usual
symbol for the exterior product, with an added subscript o, which is the symbol
for the Clifford product, to represent the Clifford outer product. Later, we also
use similarly modified wedge, Ag, to represent the orientation congruent outer
product. However, after presenting the last two axioms in Axiom Set [[X] we have a
bridge between the Clifford algebra and the orientation congruent algebra through
a common outer product written with an unadorned wedge A. For now, though,
we use separate symbols for the Clifford and orientation congruent outer products.

Adding the seventh set of axioms turns the nonassociative algebra over R, with
a unit, a grade projection operator, r-blades, and r-vectors, into an associative
algebra and relates the nondegenerate quadratic form @ associated with V™ to the
Clifford square of the vectors in C¢), ,. Our modified Hestenes-Sobczyk Clifford
algebra fulfills all the requirements of Definition B30 taken from Lounesto, and is
thus isomorphic to the Clifford algebra of the quadratic form @, , from generators
and relations given by Definition

Axioms VI and of Axiom Set [VTIl have been placed at the end of our list
of 26 axioms because these two will be substantially modified for the orientation
congruent algebra OC, ,. We now continue and finish the Clifford algebra axiom
set.

Axiom Set VIIL. The Cl, , Product: Specific Properties.
For all Clifford algebras Cl), 4, Clifford multiplication is such that for all A, B,C €
Clyq

(VIL1) (AoB)oC =Ao(BoC). Associativity of the Clifford product?

For all Clifford algebras C¢,, 4, Clifford multiplication multiplication is such that for
all a € V" there exists a function Q;q: V™ — R satisfying Definitions EJl and
such that

Equality of the Clifford square of
(VIL.2) aoca=Q; (a).

P a vector and its quadratic form

Next, we list Theorem B for the Clifford algebra which is the direct counterpart
of Axiom [VILT1 for the orientation congruent algebra.

25This Axiom [VILT} the associativity of Clifford multiplication, with the help of Axiom [IL2
implies the (now redundant) Axiom [I3] the associativity of scalar multiplication.
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Theorem 5.7 (Associativity of the Clifford Outer Product). For all Clifford alge-
bras Cly, 4, the Clifford outer product is such that for all A, B,C € Cl, 4

(5.4) (ANo B) No C = AN (BN C).

Proof. The proof obviously involves Definition B and Axiom [VILT], but see Harke’s
paper [84], pp. 7, 11] or Hestenes and Sobczyk’s book [97, pp. 7, 12] for the details.
0

In preparation for Definition 29 we define the exponential notation for the Clif-
ford square of any Clifford multivector by the following.

Definition 5.8 (Clifford Square Exponential Notation).
For all multivectors A € Cl,, ,

(5.5) A% = Ao A

The next definition extends to all vectors in the Clifford algebra C/, , the sign
and magnitude decomposition of a scalar a € R given by the signum operator sgn(e)
and absolute value operator |e|:

a = sgn(a) |al.

Definition 5.9 (Clifford Sign and Magnitude of Vectors).
Using Axiom VT2 we may decompose any vector a € V™ C OC,, , into two factors,
a sign-determined normalized scalar, its Clifford sign®® sgno(a) € {—1,0,1}, and
a scale-determined nonnegative scalar, its Clifford magnitude |a|, > 0, which are
defined by the following equations. For all vectors a € V"

sgno(a) = |a], =0, ifa**=0,
(5.6)

a°2 = sgno(a)|al’, otherwise.

5.4. Modified HS Axioms for the Orientation Congruent Algebra OC, ,.
We consider now another list of 25 axioms parallel to the one above, but with the
last two modified. Then, we add four new axioms to obtain a list of 29 axioms?”
that will provide the axiomatic foundation for the OC, , algebra.

Definitions B4l BH, B8, and the first 23 axioms in Axiom Sets [l through [V are
changed, but only trivially with the replacement of the terms and symbols referring
to Clifford algebra with those referring to orientation congruent algebra. Therefore,
we do not list Definitions 4l B B8 or the first 23 axioms in their modified forms.

The numbers of any modified definitions and axioms for the orientation congruent
algebra, whether they are explicitly repeated in modified form or not, will be marked
with primes to indicated their correspondence with the original axioms for the
Clifford algebra. However, the numbers of the four new axioms, their axiom sets,
and any new definitions will not be primed. Next, we briefly describe the material
changes and additions to Axiom Set [VTIl before making them.

26Hostonos, Li, and Rockwood in their book contribution |96, p. 2] use the name signature
and symbol €5 for this quantity, rather than our name sign and symbol sgne(a). However, our
name and symbol are consistent with the analogous definition for real numbers. Thus, it fulfills
the dictum that we should use uniform terms and symbols for multivectors of all grades.

27As with that for Clp,q this axiom system for OCp 4 must also be supplemented with suitably
modified conditions similar to (2) and (3) of Definition B30 and the requirement that R and V™
are distinct subspaces, again all adapted from Lounesto [I23] p. 190].
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The nontrivial changes to the Clifford algebra axioms in Axiom Set VIl required
to convert them to axioms for the orientation congruent algebra are

(1) restrict the product in Axiom [VIT] the associativity axiom, from the al-
gebra product to the outer product,

(2) extend the domain of Axiom [VIL2 the axiom for the equality of the algebra
product square of a vector and its quadratic form to nonscalar blades, and

(3) add the two new Axioms [VIITI] and VTIL2l supplementing the now re-
stricted Axiom [VILT] that, in the given algebra, or, if necessary, the al-
gebra derived from it by extending its base space one dimension higher,
requires the existence of a counit we of a set of multivectors of with the
key property: generalized </-universal commutativity of the right we-com-
plement.

The first, explicitly modified axiom set uses Definition for the orientation
congruent outer product of multivectors. Since this definition is obtained by triv-
ially modifying the corresponding Clifford algebra Definition E3, we do not state it
explicitly. However, recalling that the symbol for the Clifford outer product is Ao,
we do state that the analogous symbol for the orientation congruent outer product
is /\@.

Axiom Set VII' (modified). The OC, , Product: Specific Properties.
For all orientation congruent algebras OC,, ,, orientation congruent multiplication
determines through Definition above the existence of the orientation congru-

ent outer product as another algebraic product on the set OC, , such that for all
A B,CeOCp,

Associativity of the orientation
(VIL1) (AAg B)Ne C=ANg (BAg C).

congruent outer product

For all orientation congruent algebras OC,, ,, orientation congruent multiplication
is such that for any nonscalar r-blade A = a;®---©a;©- - -©a, with pairwise anti-
commuting vectors a;, there exists a function Qp@

¢ V" — R satisfying Definitions
Bl and such that
Equality of the OC square of an
r-blade and the product of the

quadratic forms of its vectors

Ao A=

VIIL.2
VILZ) 09 (an) -+ @2, (ar) - Q2 (a).

The definition of the orientation congruent square notation, A®2, is completely
analogous to the definition of the Clifford square notation given in Definition
The next definition, however, similarly to Definition B3, extends to all blades in
the orientation congruent algebra OC, 4 the sign and magnitude decomposition of
a scalar @ € R given by the signum sgn(e) and absolute value |o| operators: a =

sgn(a) [af.

Definition 8.9’ (Orientation Congruent Sign and Magnitude of Blades).

Using Axiom VIL2] we may decompose any blade A € OB(,, € OC,, into
two factors, a sign-determined normalized scalar, its orientation congruent sign
sgne(A) € {—1,0,1}, and a scale-determined nonnegative scalar, its orientation
congruent magnitude |A[y > 0, which are defined by the following equations. For
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all blades A € OB(,, ,
sgne(A) = |Al, =0, if A®? =0,

5.6
(5.6") A®? = sgng (A) A2, otherwise.

Now we may continue and finish with the last axiom set for the orientation
congruent algebra comprising two new axioms. Axioms [VIITIl and define
a counit. But first, we introduce a notation involving a counit that provides a
naturally compact way to write the expressions in Axiom and the sequel.

Definition 5.10 (Counit Complementation Superscript Notation).

Let &7 C OC, 4 be any nonempty set of multivectors and A € &/ be any multivector
in «/. Then wy is a special multivector associated with o7, called a counit of <7,
that we will defined in Axiom However, for now we only define the notation
that will be used to state the axiom. We define a postfixed or prefixed superscript
w,y attached to A as

(5.7) A% .= A® wy, or
(5.8) YA = wy © A

We call these operations right or left w.-complementation, or right or left counit
complementation by wy. When written as superscripts we give these complemen-
tation operations precedence over all other operations, including orientation con-
gruent, Clifford, and outer product multiplications.

The last definition we need to introduce before Axiom Set VI follows.

Definition 5.11 (The Dimensional Extension®® of OC, ).

Let OC,, 4 be any orientation congruent algebra. Then the dimensional extension of
OC,,q means OC,, 4 itself, or either of OCp 1 4 or OCp 441, the orientation congruent
algebras (which always exist by Axiom [VIILT) derived from OC, 4 by arbitrarily
extending its base space by one dimension. We write the dimensional extension of
OCp.q as OC(p g+, its signature as (p,q)", and its dimension as n™. We also say
OC(p,q)+ is a dimensionally extended orientation congruent algebra. We use the
dimensional extension OC, ,)+, its signature, and its dimension as metatheoretical
constructs, so that, for example, when we say x € OC(, 4+ we mean x € OC,p g,
2 € OCpii,q, or © € OCp g41.

Axiom Set VIII (new). The OC, , Product: Counit Properties.
Let OC, 4 be any orientation congruent algebra. Then

(VIIL.1) OCpt1,g and OCp, q41 exist,  Existence of dimensional extension
and for all nonempty sets of multivectors & C OC,, 4, there exists a (nonunique)

nonscalar, unit magnitude n*-blade wy € OC(, o)+ with nt an odd integer, called
a counit of &7, such that for all (not necessarily distinct) multivectors A, B € &/

A%’ 9 B=A®© B“ = Generalized @Zuniversal commuta-

(VIIL.2) (A® B)“. tivity of right wg~complementation

28The development of this formulation was initially prompted by John Browne’s [32] suggestion
that even-dimensional base spaces be included in the definition of an orientation congruent algebra.
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Theorem 5.12 (o£Universal Commutativity of we). For all nonempty sets of
multivectors o/ C OC, 4 within any orientation congruent algebra OC, 4, there exists

a counit wey € OC(y, q)+, such that for all multivectors A € o

(5.9) AOwy =wy© A

Proof. The proof follows immediately from Definition and Axiom by
setting B = 1. 0

Precisely now with the presentation of the final axiom in Axiom Set [VIIII we
have completed the construction a modified Hestenes-Sobczyk axiom system for
the orientation congruent algebra of a nondegenerate quadratic form. However,
because of the pivotal role of the counits in the orientation congruent algebra we
are about to enter into a long series of definitions and remarks related to them.

These definitions and remarks will be followed by one more, final axiom, that
is not an axiom of either algebra alone, but that acts as a bridge between the
Clifford and orientation congruent algebras of the same vector space and quadratic
form. This final axiom allows the two algebras to be knit together into a one
system with two fundamental products—the Clifford product and the orientation
congruent product—as well as one common outer product.

Remark 5.13. We normally use the single word counit which is a contraction of
the phrase coscalar unit. However, to avoid confusion when working with Hopf
or similar algebraic theories which use the term counit for an unrelated concept,
we may employ the full phrase coscalar unit. The “unit” part of this name is
appropriate because a counit behaves algebraically like the unit. Indeed, for the
set &/ = OC, 4 1 and —1 are the only elements other than a counit of OC, 4 or its
negative, twgy, that are of unit magnitude and satisfy Axiom [VITTL.2] (excepting that
they are scalars). Also, the “co” part of the name is consistent with the definition
of a coscalar as an element of OC,, 4 that has a complementary grade or cograde of
0 = n" — k because it has a grade of kK = n™ in the set of multivectors OC(p,q)+
with n™ = p+ q or nt = p+ ¢+ 1. Generally, when working in the algebra OC,, 4,
a minimal grade counit wg of a nonempty set of multivectors 27 has a cograde of
0=m — k (or a grade of k = m) relative to the smallest odd m =r + s < n* such
that & C OC, s C OC(p7q)+.

Next, applying the last axiom, we make two sets of definitions. The first set
characterizes the counits defined by Axiom as being intrinsic, extrinsic, or
nonintrinsic to the orientation congruent algebra OC, ,. The second set extends
the usage of the word counit to the unit-magnitude, maximal-grade blades in OC, 4
by qualifying it with the three adjectives perfect, imperfect, or indefinite. Later, in
the heart of the paper, the terminology of this second definition will prove to be
very convenient.

Definition 5.14 (Algebra-Intrinsic, -Extrinsic, and -Nonintrinsic Counits).

(1) If the there exists a counit wy of Axiom or Theorem such
that it is not only an element of the dimensionally extended orientation
congruent algebra OC, ,)+, but also an element of the given orientation
congruent algebra OC, 4, we say that it is an algebra-intrinsic counit of o7
The counit of OC, 4 is algebra-intrinsic if, and only if, n = p + ¢ is an odd
integer.
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(2) If that counit wy is not an element of OC, , we say that it is an algebra-
extrinsic counit of 7.

(3) In any case, without further information, we may say that the counit of
Axiom or Theorem is an algebra-nonintrinsic counit, meaning
a not necessarily algebra-intrinsic counit.

Definition 5.15 (Perfect, Imperfect, and Indefinite Counits and OC Algebras).

(1) If & = OCp,q, we may call any algebra-intrinsic counit we, of OC, 4 a perfect
counit of the algebra OC, 4. We usually write such a counit with a boldface
uppercase omega as 2. If any orientation congruent algebra OC, , has a
perfect counit, we may call that algebra a perfect orientation congruent
(POC) algebra and write it as POCp 4.

(2) If @ = OCpq and OC,, does not have an algebra-intrinsic counit wgy,
we may call any unit-magnitude n-blade of OC, 4 an imperfect counit of the
algebra OCp, 4. We usually write such a counit with an upside-down boldface
uppercase omega as U. If any orientation congruent algebra OC, ; does not
have a perfect counit, we may call that algebra an imperfect orientation
congruent (ZOC) algebra and write it as ZOCp 4.

(3) In any case, without further information about whether the orientation
congruent algebra OC, , has an algebra-intrinsic counit or not, we may
call any unit-magnitude n-blade of OC,, , an indefinite counit of the algebra
OCp.q. We usually write such a counit with the symbol Q. This symbol,
O, was designed to resemble the superposition of a handwritten boldface
uppercase omega 2 and a handwritten upside-down boldface uppercase
omega U. When we do not know, or do not wish to specify, whether an
orientation congruent algebra OC, 4 has an algebra-intrinsic counit or not,
we call that algebra simply an orientation congruent (OC) algebra and write
it as OCp 4, just as we have done until now.

Remark 5.16. As we have postulated in Axiom [VIILIl the imperfect orientation
Z0C, , with even n = p + ¢ can always be extended by one dimension to the
perfect orientation congruent algebra POC, o with odd n’ = p' +¢ = n+ 1.
We can create this perfect orientation congruent algebra from ZOC, 4, by letting
POC, o have the set of primed basis vectors %' = {e},...e), } obtained by
adding one more basis vector to some signature-ordered, orthogonal set of basis

vectors B = {e1,...,€p, €pq1,...,€,} for ZOC, ;. The new basis vector must be
orthogonal to the original ones, but it could be either e;/ = e;H with @ (e;/) > 0,

which makes p’ = p+ 1 and ¢’ = ¢q), or €], = €], with Q (e],,) < 0, which makes
p’ = pand ¢’ = ¢g+1. The imperfect orientation congruent algebra ZOC,, , is actually
a subalgebra of either of POC,; 1,4 or POCy, 441, the two next higher-dimensional
perfect orientation congruent algebras with compatible signatures.

Remark 5.17. The q part of the signature (p,q) of the quadratic form associated
with OC, , determines the sign of the orientation congruent square of an indefinite

counit of the algebra by sgn(Q) = 0% = (—1)7.
We now extend the superscript notation for counit complementation to these

new counit concepts and symbols with the following definition. This notation will
prove its worth in a later section of the paper.

Definition 5.18 (Extended Counit Complementation Superscript Notation).
Let O,, be any of types of extended counits of the orientation congruent algebra
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OC, 4 specified in Definition bI0l namely, a perfect counit, €2, an imperfect counit,
U, or an indefinite counit, Q. Also, let A € OC, 4 be any general multivector in
OCp.q. Then we define a postfixed or prefixed superscript O,, attached to A as

A% .= A®0,, or
04 .= 0, A.

We call these operations right or left, perfect (imperfect, indefinite) counit com-
plementation, or right or left complementation by a perfect (imperfect, indefinite)
counit. When written as superscripts we give them precedence over all other opera-
tions, including orientation congruent, Clifford, and outer product multiplications.

Next, we extend this superscript notation for counit complementation to the
unit-magnitude pseudoscalars of a Clifford algebra with the following definition
involving Clifford multiplication rather than orientation congruent multiplication.
This notation will also be useful in a later section of the paper.

Definition 5.19 (Pseudoscalar Complementation Superscript Notation).

In the applied geometric (Clifford) algebra literature the term pseudoscalar is used
for a general, maximum grade blade in a geometric algebra with a base space V"
of fixed dimension n. Now let I be a unit-magnitude pseudoscalar of the Clifford
algebra Clp 4. Also let A € Cl,, be any general multivector in Cl, ,. Then we
define a prefixed or postfixed superscript I attached to A as

Y:=To0A, and
A= Aol

We call these operations, respectively, left and right pseudoscalar complementation,
or left and right complementation by a pseudoscalar. When written as superscripts
we give them precedence over all other operations, including orientation congruent,
Clifford, and outer product multiplications.

Finally, we define a pseudoscalar with a particular orientation as the pseudoscalar
and a counit with a particular orientation as the counit.

Definition 5.20 (The pseudoscalar and the counit).

(1) For the Clifford algebra C¢, 4, there are exactly two oppositely-oriented,
unit-magnitude pseudoscalars, I and —I, that differ only by sign. Often
in the applied geometric algebra literature and always in this paper, the
phrase the pseudoscalar is used to refer to a unit-magnitude pseudoscalar
I with a definite, explicitly assigned, orientation. If an explicit orientation
for I is not mentioned, but an ordered, orthonormal set of basis vectors for
V", B ={ej, eq,...,e,}, is available, we assume that I is assigned the
orientation that is compatible with that of V™, namely, £e; Aex A---Ae,.

(2) Similarly, for the orientation congruent algebra OC, 4, there are exactly
two oppositely-oriented, indefinite counits, Q and —Q, that differ only by
sign. The phrase the indefinite counit of the algebra OC, 4, or, simply, the
indefinite counit is used to refer to an indefinite counit with a definite, ex-
plicitly assigned, orientation. To distinguish it from its oppositely oriented
companion we may sometimes write the indefinite counit with an underline
as Q. If an explicit orientation for O is not mentioned, but an ordered,
orthonormal set of basis vectors for V", # = {ej,eq,...,e, }, is available,
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we assume that O is assigned the orientation that is compatible with that
of V™ namely, te; Aes A---Ae,.

(3) We extend the terms and notations of this definition for the indefinite counit
of the orientation congruent algebra OC, , to the perfect counit €2 of the
perfect orientation congruent algebra POC, , and the imperfect counit U
of the imperfect orientation congruent algebra ZOC, 4.

Remark 5.21. Usually we work with one ordered, orthonormal set of basis vectors,
2B ={ei,es,...,e,}, shared by both the Clifford algebra C¢, , and the orientation
congruent algebra OC,, ,. However, according to the conventions of Definitions
and B9 for an indefinite counit O that has the same orientation as a pseudoscalar
I, it turns out that although O is equal to I, always, A2 is not necessarily equal
to AL, and neither is ©A necessarily equal to Y, for a general multivector A and a
general dimension n:

A8 £ A in general, and
B4 £ in general.

Remark 5.22.

(1) The penultimate axiom, Axiom VTILZ, along with Axiom [VILT] replaces
Axiom [VTTT] expressing the associativity of the Clifford product. Associa-
tivity is just one (the simplest) member of the class of possible bracket
shifting rules.

(2) Axiom [VILT] partially replaces the general associativity of the Clifford
product with that of the orientation congruent outer product. The ori-
entation congruent outer product is derived by a grade selection from the
orientation congruent product. Equivalently, this axiom may be restated
to postulate the associativity of the orientation congruent product of the
component vectors of two blades if those component vectors mutually an-
ticommute under the orientation congruent product when combined as one
group. This axiom has a direct analog as a theorem in all Clifford algebras
Cly.q-

(3) Axiom [VTILZ supplements Axiom [NILT]with a bracket shifting rule involv-
ing w., and is more complicated, but generally applicable. Axiom NIL1]
has a direct analog as a theorem in all Clifford algebras. But Axiom
has a direct analog as a theorem in only Clifford algebras C/, , with odd
n=p+gq.

(4) In summary, we might say that to transform the axioms for C¢,, 4 into those
for OC,,, we have traded an expansion of the domain of applicability of
Axiom from vectors to blades in Axiom for a restriction of the
domain of applicability of Axiom [VITIl with its consequent fragmentation
into the two Axioms and

5.5. Algebra Fusion. Now, after having developed the Clifford and orientation
congruent algebras separately we present a final, bridge axiom set. Its two axioms,
properly speaking, belong to neither the Clifford algebra, C/, ; nor the orientation
congruent algebra, OC, ;. However, we can use the axioms of Axiom Set [X] to knit
the Clifford and orientation congruent algebras together into a kind of generalized
Kéhler-Atiyah algebra which contains the Clifford, orientation congruent, and outer
(exterior) products, as well as various flavors of Clifford and orientation congruent
inner products and contraction operators.
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Axiom Set IX (new). Clifford and Orientation Congruent Algebra Bridge.
Let Cl,, 4 be any Clifford algebra and let OC, 4 be any orientation congruent algebra
such that p = p’, ¢ = ¢/. Then there is an isomorphism f: V¥ = ¢t} , — Vg’q, =
OC;/yq/ from the Clifford to the orientation congruent product of vectors which
satisfies the following equations:
(IX.1)
Isomorphism of the Clifford
xoy+yox=f(x)® f(y)+ f(y) ® f(x), and orientation congruent
anticommutator for vectors

(IX.2)
Isomorphism of the Clifford

xoy—yox=f(x)® f(y) — f(y) ® f(x). and orientation congruent

commutator for vectors

After adding the two axioms in Axiom Set [X] the results cataloged in the fol-
lowing remarks follow. However, we leave all proofs to the reader, reminding that
the sources [84] [97], [123], and [I24] are available for some.

Remark 5.23. Henceforth, we identify isomorphic vectors from each algebra as well
as the two quadratic forms. Therefore, we may use a common notation for the
vectors spaces and quadratic forms and simply write V77 := Cf, . = OC, , and
Qpq=Qp,=QY, . Then, for all x,y € VP4, we have

X0y =X0Yy.

Remark 5.24. Any vector x € VP4 has a common square in the two algebras, which
we may write simply as x?:

x? = x°? = x®2.
Remark 5.25. For all sets of  vectors, that pairwise anticommute in either algebra,
their Clifford and orientation congruent outer multiproducts are equal to each other
and to their Clifford and orientation congruent multiproducts. Therefore we may
simply write all multiproducts of these vectors with the same symbol A:

TIN NN NTp =1 No o No T No .. No Ty
=21 Ng N Ti N --- Ng Tr
=2]0---0T;0...0%,
=210©@---@Qx; ©...0 T,.
Thus, all Clifford multivectors are equal to their orientation congruent counterparts,
and we have one set of multivectors, which we write as CO, 4, with three products

o, ®, and A. We name the algebra of this set and its three products the Clifford-
orientation-congruent algebra.

Remark 5.26. We agree to use the common symbols: B¢ for the set of blades, %
for an orthonormal set of basis vectors, and Blg for a (nonunique) set of basis
blades derived from Z. We extend by analogy the use of all symbols previously
defined separately for the Clifford and orientation congruent algebras to the com-
mon algebra CO, 4. Specifically according the above remarks, we have the following
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equalities of sets and, generally, in the sequel we prefer to use the first symbol in
each line:

Blg == CBly = OBlg, Basis r-blades
Bly := CBly = OBly, Basis blades
Be, , = CBt, , = OB, r-Blades
Bty 4 == CBt, , = OBy, 4, Blades
co, , =ct, = 0cC, r-Vectors
CO,y :=Cly g = 0OCpq. Multivectors

With the help of Axioms Xl and we can establish a more general compat-
ibility relation between the Clifford and orientation congruent products of any two
blades that jointly anticommute. However, we must first define the meaning of the
phrase compatible blades.

Definition 5.27 (Compatible Blades).

We say that any two nonscalar blades A, B € Bl are compatible if and only if there
exists a set of vectors C that pairwise anticommute and both A and B can be
expressed as a product of vectors from C and a scalar factor. By extension, we also
define any scalar and to be compatible with any blade.

Theorem 5.28 (C¢ and OC Product Compatibility of Compatible Blades).  For
all blades A, B € Bl that are compatible there exists a scalar o € {1, —1} such that

(5.9) AoB=aBoA

if and only if

(5.10) AoB=aBoA.

Proof. The proof is left to the reader. O

Remark 5.29. In a later section, after adding to the Clifford, orientation congruent,
and outer products various derived inner products and contraction operators, we
see that the Clifford-orientation-congruent algebra is a kind of generalized Kéhler-
Atiyah algebra. These derived inner products and contraction operators are dif-
ferent depending on whether they arise from the Clifford or orientation congruent
products.

5.6. Other Axiom Systems. Before we give a set of axioms for OC, , we first
introduce a compact axiomatic definition of C/,, adapted from Lounesto’s pre-
sentation.?? Then we will expand this compact definition into a longer list of 25
axioms in seven sets. Finally, after modifying this axiomatic formulation for C¢, 4,
we obtain a system of 27 axioms for OC,, .

Hereafter the term multivector shall refer to any element of the Clifford algebra
Clp.q (or the orientation congruent algebra OCp,) including those containing a
scalar or vector component. Also the Clifford algebra product shall be denoted by
an open dot 0.%°

293ee Lounesto’s book 23] pp. 190-192]. Chapters 14, 21, and 22 of the same book also
give several other definitions of a Clifford algebra.

3OUsuaHy Clifford multiplication is indicated by juxtaposition but here we prefer to distinguish
between it and orientation congruent multiplication by giving each its own symbol: an open dot
o, and a circled open dot ®, respectively.
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Definition 5.30 (The Clifford Algebra C¢, ; Defined by Generators & Relations).

This definition is taken from Lounesto’s publications [123, p. 190], [T24, pp. 26—
27]. An associative algebra over R with unit 1 is the Clifford algebra Cl, 4 of a
nondegenerate quadratic form @ on V" (with the Clifford product symbolized by
an open dot o) if it contains V"™ and R = R - 1 as distinct subspaces so that

(1) zox =Q(z) for all z € V",
(2) V™ generates Cl)p, 4 as an algebra over R, and
(3) Cl, 4 is not generated by any proper subset of V.

As Lounesto remarks condition (3) of Definition B30 ensures that C/,, 4 so defined
is a universal object in the category theoretic sense and that the dimension of Cf,, 4 is
2™. Roughly stated, the universality of a Clifford algebra means that it is unique up
to isomorphism under a change of orthonormal basis and that it is of the maximum
size allowed by its definition.®! Applied works commonly use a long set of axioms
similar to those we give next to define the Clifford algebra Cf,, ,; however, usually
their authors do not also mention the refinement of condition (3).

The literature provides other axiomatic formulations of Clifford algebras of vary-
ing generality. Here we will consider their adaptability to the orientation congruent
algebra.32

These other Clifford algebra axiom systems range, for example, from those de-
scribing a Clifford algebra as an ideal of a tensor algebra [123] pp. 193 f.], or de-
scribing it in category-theoretic terms as the universal object of a quadratic algebra
123, pp. 192 f.], or embedding it as a subalgebra of the associated exterior alge-
bra’s endomorphism algebra through the Chevalley-operator representation (which
Chevalley [#4] based on the Cartan decomposition formula),® or describing it as
a Hopf gebra* using tensor algebra and category theory expressed in commuta-
tive and tangle diagrams [68, Chs. 3-5], to providing a multiplication rule for basis
blades represented by n-tuples of binary digits called multi-indices ([TZ3], ch. 21).%°

Only three of these approaches to the axiomatization of Clifford algebra are
directly convertible to the orientation congruent algebra. One is the definition as
a universal object of quadratic algebras. The modification required is simply using
nonassociative quadratic algebras in place of the (assumed) associative quadratic
algebras and adding other relations to represent Axioms [VILT1 VIL.2] and
However, since this very abstract definition is nonconstructive, it is not useful for
calculating the orientation congruent product.

31For a more detailed discussion of universality under the name unique factorization property,
and in the context of the tensor product of vector spaces, see Shaw [I67, pp. 274-277]. For a
specifically Clifford algebraic discussion see Gilbert and Murray’s book [[7, pp. 12-17] or the
brief treatment in Perwass’s thesis [[39, p. 18]. For the related category theoretic formulation of
Clifford algebras see Lounesto’s book chapter [T24], pp. 26-29]. Lastly, for German readers, the
discussion in Florian’s thesis [I09] app. A.4] appears to be good.

323ubsection has more remarks on axiomatizations.

33This decomposition formula is credited to E. Cartan by Crumeyrolle [BI, p. 44] and
Abtamowicz [2 p. 463]. Chevalley’s method is also used by Lounesto [I23, ch. 22|, Crumey-
rolle [BI p. 45], and Oziewicz [I35]. It is also implicit in the paper of Ferndndez, Moya, and
Rodrigues [69 p. 15]. Also see Subsection for more remarks on axiomatizations.

34This is not a misprint. Without going into details, a Hopf gebra is a more general structure
than a Hopf algebra [68], p. 65].

35This last is really a specialized form of GR axiomatization.
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It is only the last two definitions, one based on Hopf gebra and the other on
a multiplication rule for basis blades that are both adaptable and useful. That is
because the other approaches are based on intrinsically associative algebras. Hopf
gebras, however, are not ruled out; associativity is not necessary for their definition
[68, p. 65]. Also as demonstrated by Fauser [68] the Hopf gebraic approach is very
fruitful in producing grade-free computational algorithms for very general forms of
Clifford algebras.

The last definition from a multiplication rule for basis blades is easily general-
izable to Clifford-like algebras. These are essentially the algebras of the Clifford
product but as modified by a sign rule that may differ from the standard Clifford al-
gebra one [123] pp. 284 fI.]. The Clifford-like algebras, however, are not necessarily
associative. They may also have other properties that vary from those of the Clif-
ford algebras. In the following section we will construct the explicitly Clifford-like
sigma orientation congruent algebra cOC, 4. As suggested above we will fashion
the product of the sigma orientation congruent algebra from the Clifford product
times a sign factor function o.

In Section B we also prove the deductive equivalence of the set of primed axioms
for the orientation congruent algebra OC,, ; with that of the unprimed axioms for the
Clifford algebra C¢,, ; supplemented by an existence axiom for the sigma orientation
congruent product. In so doing we establish that the sigma orientation congruent
algebra of a nondegenerate quadratic form is isomorphic to the corresponding ori-
entation congruent algebra. Then, instead of reasoning directly from the axioms
of the current section, we can also prove theorems for the orientation congruent
algebra by interpreting its product as the sigma orientation congruent product and
manipulating ordinary algebraic expressions derived from the sign factor function
while citing verified Clifford algebra theorems.

Actually, in the sequel to Section [ the sigma form of the orientation congruent
product will be the basis for investigating the OC, , algebra. Indeed, in Section [l
while simply proving the equivalence of the and the sigma orientation congruent
product other proofs of some assertions made in this section will naturally fall
out as byproducts. One statement with such an incidental proof is that a perfect
orientation congruent algebra POC, , exists in all and only those base spaces V"
of odd dimension, or, complementarily, that an imperfect orientation congruent
algebra ZOC,, , exists in all and only those base spaces V" of even dimension.

5.7. Derivation of the OC3 Multiplication Table. In this subsection we derive
the multiplication table for the orientation congruent algebra OCs from the modified
Hestenes-Sobcezyk axioms of Subsection 24l Let us consider some of the conventions
used here.

The multiplication table for OCs is expressed in terms of factors that are all
the positively-signed basis blades formed from an orthonormal set basis of basis
vectors for the base space V™. In the tables of this subsection and the next the
basis blades are written with multi-indices so that, for example, es3 = e5 o e3 or
e> © ez depending on which algebra appears in the table. However, as we show in
a later section of this paper, for basis blades derived from an orthonormal set of
basis vectors, these two expressions may be identified and equated with e; A es, an
outer product common to both the Clifford and the orientation congruent algebras.
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In addition, we use a particular standard set of basis blades in these tables.
The multi-indices of these standard basis blades are ordered in sequences that are
natural for the orientation congruent algebra. Thus we write e3; and not eqs.

Partial results for the derivation of multiplication table of OCs are presented in
Tables Bl and with the scalar constants «, 3, and - substituted for the values
to be determined. The final multiplication table for OCs is presented as Table L] of
the next subsection. Also in the next subsection we give the multiplication tables
of more orientation congruent algebras and, for comparison, some of the Clifford
algebras with the same base space and quadratic form.

The red tinted cells of Table Bl contain all the products that can easily be
determined by applying the axioms in Axioms Sets [l through [TII. The untinted
cells of Table Bl contain the subscripted constants «;, 3, and . The values of these
constants can be only 1 or —1. The subscripting scheme used for the «, 3, and ~
constants will be explained below in the course of determining their values.

First, using the axioms of Axiom Set [VITIl we settle the value of the 4’s which
are associated with products which have the perfect counit € as one factor. The
subscript of a v for a given product is assigned to be the same as the multi-index
of the basis blade multiplying €2 in that product.

Using Axiom [VITT2] here are the calculations for determining 1 :

(e1 @el) @Q = Q
e © (e1 © Q) = €] @’}/1823 = "le

The result, v, = 1, follows from Axiom by equating the very last expressions
in the two lines of equations above. By following this pattern mutatis mutandis
the v’s associated with the remaining basis blades may also be determined to be 1.
These values have been entered into Table

Next we derive values for the o constants. These constants are associated with
products between vector and bivector basis blades. The a’s are indexed according
to the following scheme. The modified multi-index of an « associated with a given
product is the same as that of the bivector factor involved in the product. However,
the integers in the a’s modified multi-index are not necessarily in the same order
as they are in the bivector factor. The order of the integers in an o multi-index is
such that same integer as that of the vector factor involved in the product is placed
in the same position of the a’s multi-index as the vector factor itself occupies in
the product. Finally, to distinguish that integer from the other one in an a’s multi-
index, a bar is placed over the integer that is the same as the vector factor’s index.

Consider now the following products which follow the pattern of Axiom

(e1 © Q) © ey = eg3 @ ey = Q35€3
(5.11) e; © (92 © Q) = e; @ e3; = ajzes
(e1 @92)@92612@9293.

Commuting e; and ey in the above set of equations leads to the following set:

(82 © Q) ©e; =e3; @e; = Q37€3
(5.12) ex © (el © Q) = ey @ ea3 = (xz3€e3
(eg @el) © N =—eo=—es.
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Using Axiom [VIIT2], we can relate the very last expressions from the six lines in
equation sets E.11] and .12 above to obtain:

gy = —0p3 =1,

{3 = —Q3] = 1.
The remaining values for the a constants can be obtained from the results in
above equation set by making the following reverse, 1 — 3, 2 — 1, 3 — 2, and
forward, 1 — 2, 2 — 3, 3 — 1, cyclic substitutions in the indices of the constants.

The result of this process combined with the result above is the following set of
values for all the a constants:

a3z = —ag3 =1,
5.13a
( ) aiz = —ogp = 1,
Qo = —aqy =1,
5.13b
( ) Q3 = —Q3 = 1,
a3 =—ag =1,
5.13c
( ) a3 = —agz = 1.

Now we are ready to determine the values of the [ constants. These constants
are associated with products of bivector factors. The (’s are multi-indexed by the
surviving integers of the two bivector factors in a given product. The order of the
integers in any [ constant’s multi-index is the same as that of the order of the
bivector factors from which they were “inherited.”

Consider now the following products which follow the pattern of Axiom

(e31©0Q) @ez =ex©er =az e =e;
(5.14) €31 @ (e12 © ) = e31 ©e3 = ajze; = e
(e31 @ €12) © Q = f3ze03 © N = B3ze.
Commuting e3; and e in the above set of equations leads to the following set:
(e12©@N) ©@e3 =e3@e3 =aze = —e;
(5.15) e12 @ (e31 ©N) =ep@ey = ajze; = —e;
(e12 ©@ e31) © R = fazers © N = faze.

Using Axiom VTIT2 we can relate the very last expressions from the six lines in
equation sets E.14] and .18 above to obtain:

(5.16) B3y = —fas = 1.

The remaining values for the 3 constants can be obtained from the results in equa-
tion set by making the following reverse, 1 — 3, 2 — 1, 3 — 2, and forward,
1—2,2—3,3— 1, cyclic substitutions in the indices of the constants. The result
of this process combined with the result above is the following set of values for all
the 3 constants:

Bz = — (23 = 1,
(5.17) P21 = =Pz =1,
P13 = —fB31 = 1.

The complete multiplication table for OCs is derived from Tables Bl and by
substituting the value 1 for all multi-indexed v constants, and by substituting the
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TABLE 5.1. Derivation of the Multiplication Table for the Orien-
tation Congruent Algebra OCs: 1. The entries in the red tinted
cells have been derived using scalar multiplication and Axiom Set

Bazeas | Bizesn

1 Biz€12

621912

Y1€23 | Y2€31 | Y3€12 § V12€3

values taken from Equation sets BoI3] and ET7 above for all the multi-indexed «
and [ constants. It is presented as Table 8] of the next subsection.

5.8. More Multiplication Tables. We end with multiplication tables for the
Clifford algebras Cly (Table B3), Cl; (Tables BH BE), and for the orientation
congruent algebras OCy (Table BAl), OC3 (Tables B BF), OC, (Table EEH), and
OCs (Table EI0). In these tables we write the pseudoscalars of the two Clifford
algebras Cly and Cl3 as I = ejo = ejoey and I = ejo3 = €1 0 ey 0 e3. Also,
we write here the perfect counits of the two perfect orientation congruent algebras
OC3 and OCs; in omega notation as 2 = ej23 = €1 © €2 © e3 and 2 = ej9345 =
e © ey © ez ©eq © e;. Finally, we write here the imperfect counits of the two
imperfect orientation congruent algebras OCs and OC4 in inverted omega notation
as 62812 =e; @ey andU:e1234 =e; @ey;©@©e3©@ey.

The underlined entries in the orientation congruent algebra multiplication tables
are oppositely signed compared to those in the tables for the corresponding Clifford
algebras. We adopt this convenient underlining here, even though it conflicts with
the convention mentioned in Definition 20 of subsection R4l which uses underlining
of the symbol € to distinguish the counit. Also, in all tables the entries in red-
tinted cells are negatively signed; while the entries in untinted cells are positively
signed.

Tables and show a certain form of the multiplication tables for the alge-
bras OC3 and OCs. The cell coloring in these tables makes the reflection symmetry
of the signs of the products about the central horizontal and vertical axes easy
to see. Table shows the same form of the multiplication table for the Clifford
algebra Cl3. Here the pattern of cell coloring has no obvious symmetry.



EXTERIOR CALCULUS IN THE IMAGE OF ODD FORMS 83

TABLE 5.2. Derivation of the Multiplication Table for the Orienta-
tion Congruent Algebra OCs: II. The entries in the red tinted cells
have already been derived. The entries in the remaining untinted
cells are derived using Axiom Set [VITIl

Q€2 | (Xz€3
04§1e1
a31€1

623923

Q53€3

(32€2

Qr1€2 |(X15€1
31€3

Bizesn

ﬁ12el2

aq3eq | f32ers
agzes | asg ez | B31e31 | Baiern

Both the reflection symmetries in Tables B0l and BI0 and their lack in Table B0
result from displaying these tables in a canonical form specific to the orientation
congruent algebra. The arrangement of these tables is an example of a multiplication
table canonical form (MTCF) of type OC1.

Any MTCEF for an algebra is determined by just two criteria:

(1) the ordering chosen for the multi-indices of each basis blade; and
(2) the ordering of the basis blades in the indicial leftmost column and top row
of the table.

I have not yet worked out the general definition of a MTCF of type OC1 and am
deferring full investigation of this combinatorial problem until a later publication.
Nevertheless, we may still roughly say that a type OC1 MTCF satisfies the type 1
criterion above by ordering the multi-indices of the basis blades so that as a set they
are coherently oriented (in a specific way) relative to the counit . Also, we may
roughly say that it satisfies the type 2 criterion above by placing the factor basis
blades in the indicial column and row in a kind of graded, reflected complementary
order. As the “1”7 in “OC1” suggests these two requirements define just one of
several related multiplication table canonical forms.

For Clifford algebras we can define a MTCF of type CLI that is specified by in-
creasing numerical order within the multi-index sequences of each basis blade and
Gray code order [123] pp. 281 fI.] for the factor basis blades in the indicial column
and row. TablesBE7 and 28 contain the multiplication tables of the Clifford algebra
Cl3 and the orientation congruent algebra OCs in CL1 form. If a Clifford algebra
multiplication table is in CL1 canonical form, the signs of the products display re-
flection symmetry about the central vertical axis just as they do for an orientation
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congruent algebra multiplication table in OC1 form. However, the second sign sym-
metry pattern differs: it becomes vertical translation symmetry between adjacent
rows paired off starting from the first. And now it is the OCs multiplication table
in CL1 canonical form whose product signs display no obvious symmetries.
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TABLE 5.3. The Multiplication Table for the Orientation Congru-
ent Algebra Cls. Red cell entries are negative.

TABLE 5.4. The Multiplication Table for the Orientation Congru-
ent Algebra OC,. Red cell entries are negative.
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TABLE 5.5. The Multiplication Table for the Clifford Algebra C/s.
The factors are in reflected, complementary grade order with in-
dices in orientation congruent order. Red cell entries are negative.

TABLE 5.6. The Multiplication Table for the Orientation Congru-
ent Algebra OCs. The factors and indices are ordered as in Table
above. Red cell entries are negative. Underlined entries are
signed oppositely to those in Table
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TABLE 5.7. The Multiplication Table for the Clifford Algebra Cls.
The factors are in Gray code order with indices in increasing nu-
merical order. Red cell entries are negative.

TABLE 5.8. The Multiplication Table for the Orientation Congru-
ent Algebra OCs. The factors and indices are ordered as in Table
B above. Red cell entries are negative. Underlined entries are
signed oppositely to those in Table B

87
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TABLE 5.9. The Multiplication Table for the Orientation Congruent Algebra OC;. The indices of each factor are
ordered as in Table BI0 for the orientation congruent algebra OCs. Red cell entries are negative.
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6. THE CLIFFORD-LIKENESS OF THE ORIENTATION CONGRUENT ALGEBRA

Proof is an idol before whom the pure mathematician tortures him-
self.
Sir Arthur Eddington [65, p. 337]

In this section we first give a fundamental defining formula for the sign factor
function o so that multiplying the Clifford product of basis blades by o converts it
into the orientation congruent product. Next, from that defining formula for the
OC product of basis blades, we derive an expression for the OC product of general
multivectors.

CHECK: Thus, we show that the orientation congruent algebra is a Clifford-like
algebra.

Throughout the rest of the paper, we exploit the formula for the orientation
congruent product based on the sign factor function in two ways. First, we use
it theoretically to construct proofs. Second, we use it practically to calculate the
orientation congruent product by hand or by computer.

In the last part of this section we validate of the sign factor function formula by
proving

(1) that the orientation congruent product based on it satisfies the primed
axioms given in the last section, and

(2) that the axioms for the orientation congruent algebra determine the sign
factor function formula.

Actually, we explicitly prove (1) for only the last four axioms in Axiom Sets [VII
and [VIITF Axioms MITT1 VTT21 VIITT and A proof for these four alone is
sufficient because they are the only axioms that are either material modifications
of some unprimed axiom or are entirely new.

6.1. Sigma Orientation Congruent Product Definition by the Sign Factor
Function. In this subsection we define the Clifford-like sigma orientation congru-
ent algebra 0OC,, , and provide formulas for computing it.

In the following subsection we demonstrate that the OC, 4 algebra of the primed
GR axioms is a Clifford-like algebra. We accomplish this by proving that the OC, ,
algebra is identical to (or, more properly, isomorphic with) the explicitly Clifford-
like 0OC,, , algebra.*®

In accordance with this fundamental definition we give an explicit formula for
o as a function of the two basis blades in the product. From this first formula for
o as a function of two basis blades we then derive a formula for o as a function of
the grades of any two homogeneous multivectors, but parametrized by the grade of
the t-vector part of their Clifford product. In the end, by using the fundamental
decomposition of the Clifford product, we obtain an explicit expression for the ori-
entation congruent product of two arbitrary multivectors in terms of the sign factor
function and their Clifford product. The proof of the keystone algebra isomorphism
Theorem is delayed until the next subsection.

361 another view we are proving the deductive equivalence of the primed orientation congruent
axioms of the last section with that section’s unprimed Clifford algebra axioms but having added
to them as an axiom of existence Definition for the (sigma) orientation congruent product.
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In this section general set-theoretic sets as well as sets of basis vectors®” are
written as upper case letters in a calligraphic font such as Z. However, the power
set function & as well as sets of blades or general multivectors are written in a
script font. Also, #(Z) denotes the cardinality of a set Z; P (I), the power set of
T IC, the set complement of 7; and +7 := {a | +a € T}, the negative extension
of Z. The symbol @ stands for the empty set { }.

First, we define notations for an ordered, orthonormal, set of basis vectors and
various sets of basis blades derived from it. For n = p+q, let Z = {e1,...,e,_1,€,}
be an ordered set®® of mutually orthogonal unit basis vectors for OC,, and its
corresponding Cl,, . Then Blg signifies the set of basis blades for OC, 4 and Cl, 4
generated from 2 by taking, for each subset of %, the outer product® of all basis
vectors in it in their prescribed order.*® We use Bl to mean the set of basis blades
generated by % which are of grade 2 < r < n. We also make the definitions
Bt := % and BlY, := 1.

We also adopt the compact multi-index notation for the blades in the set +5(%
(cf. Artin [ pp. 186-188], Chevalley [4, p. 40], Deschamps [68, p. 688], Shaw
[[67, pp. 326 f]). A multi-index is a sequence of integers from the set Z[1,n]
that is written as a subscript to the base symbol for a basis vector. Generally, we
use upper case italic letters for symbolic multi-indices as in e;. For a sequence
I =4iy,...00—1,% of length » > 2 we define e; :==e;;, A---Ae;_, Ne;.. The two
limiting cases are treated as follows: if I is a sequence of length 1 with I = ¢, we
define ey := e;; and if I is the empty sequence ¢, we define e. := 1. For example,
ejo := e; A es. In this example, we have left out the separating comma in the
sequence 1,2. Expressions following this convention will not be ambiguous as long
as n < 9. For more flexibility and to adapt to the natural basis of the orientation
congruent algebra (used, for example, in Tables and BIM), we allow violation
of the usual Clifford algebra convention that the sequence of integers in a multi-
index must be ordered from least to greatest. Then, for example, we may write
€21 = —eja.

Next, we introduce a function bset(e) which is implicitly parametrized by some
ordered, orthonormal, set of basis vectors & for the orientation congruent algebra
OC,,4 and its corresponding Clifford algebra Cl,, 4.

Definition 6.1 (Basis Set Function).
We define the basis set function bset: + Blg — P2(%) such that for all e; € + %"

{eijE%leI:ieil/\.../\eij/\"'/\eiT}, if?‘22;
bset(er) := ¢ {e;€ B |er==te;}, ifr=1;
, if r=0.

3TWe except from this rule the set of all basis vectors for an algebra which we also write in a
script font as 4.

401 this section 2 is not necessarily signature-ordered; that is, ordered such that all basis
vectors of positive signature precede those of negative signature.

408ince the vectors in % are mutually orthogonal, e; Ae; = e;0e; = e; @e; for any e;,e; € #
(see [B4], p. 15, Equation (89)). Therefore, Blyg = CBlyg = OBlg and any basis blade of OCp 4
is a basis blade of Clp 4. Also, we take the outer product of one factor to be that factor and the
outer product of no factors to be the unit 1.

40Accordingly, the vectors in & are called the generators of OCp.q (or Clp q).
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We call any set T C A a basis subset. We also extend the function bset in the
obvious way so that bset: P (+Blyg) — P(P(%A)),. Therefore, in particular,
bset(+1) = &, bset(+e;) = { e; } for all e; € B, and bset(+Blz) = P (A).
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In the following definition a special Clifford-like algebra is defined by changing
the sign of the Clifford product o of the Clifford algebra C/,, of a nondegenerate
quadratic form given by our modified Hestenes-Sobczyk axioms. This definition of
a special Clifford-like algebra is a slightly modified translation of the definition of a
(general) Clifford-like algebra in the mazimally-graded theory of Clifford algebras
given by Hagmark and Lounesto ([83], [I23} pp. 284 f.]). Hagmark and Lounesto
define a Clifford-like algebra by specifying the sign of a certain product for basis
blades that are indexed by binary n-tuples. Basis blades of this type belong to
the theory of Clifford algebras defined as maximally-graded algebras. We obtain,
instead, what I call a special Clifford-like algebra, if the Hagmark and Lounesto
definition of a Clifford-like algebra is required to have an outer product equivalent
to the one in our Definition We use the special Clifford-like algebra below in
our definition of the sigma orientation congruent algebra, rather than the (general)
Clifford-like algebra that is exactly equivalent to the Clifford-like algebra of Hag-
mark and Lounesto, to avoid the possibility that the Clifford-like (outer) product
of basis blades may differ by a sign from their Clifford (outer) product. Since the
special Clifford-like algebras form a subset of the set of Clifford-like algebras and
all the Clifford-like algebras we refer to in this paper are the special ones, in the
rest of the paper following the next definition, we simply write Clifford-like algebra
instead of special Clifford-like algebra.

Definition 6.2 ((Special) Clifford-Like Algebra).

Let 2 be an algebra, with the product, @), that satisfies the first 24 axioms in Axiom
Sets [l through V1, Axiom VTLT] Axiom VI with a nondegenerate quadratic form
Q;)q, n = p+ ¢, that is not necessarily equal to the quadratic form @, associated
with Cl,, and both bridge axioms in Axiom Set [X], with the 2l algebra product @)
substituted for the Clifford product o or the orientation congruent product ® in all
these axioms as is appropriate. Then 2 is said to be a (special) Clifford-like algebra
if and only if the 2 product, @), is the multilinear extension to all multivectors of
the Clifford product of any two basis blades e; and e; modified by multiplying it
by a sign factor function, o: P(B) x P(B) — {+£1}, that is a function of the
basis subsets Z = bset(er) and J = bset(ey) associated with ey and e;:

(6.1) e;r@e;=0(Z,J)eroey.
Remark 6.3. With a suitable sign factor function we can define a Clifford-like al-
gebra that is isomorphic to the Clifford algebra C¢,, , for any signature (p, q).

Remark 6.4. If we were to extend the image of the sign factor function to include
0, we could then give Clifford-like algebra definitions of all the common derived
products of geometric algebra including the outer product and all types of inner
products: Hestenes, fat dot, contractions, and scalar product.

Definition 6.5. We define the sigma orientation congruent algebra of a nonde-
generate quadratic form @, ,, denoted by 0OCp 4, and with product denoted by a
circled star*! ®, as the Clifford-like algebra that is the multilinear extension to all
multivectors of the multiplication rule

(6.2) er®e; =0(I,7)eroe;,*?

defined for all pairs of basis blades ey, e; € Blg, where the sign factor function of
basis subsets o is given by

(6.3) o(I,J) = (_1)% #(INT)[2 #(I)#(J)+#(ZOJ)+1],
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for 7 = bset(er) and J = bset(ey).

Now we begin to construct an explicit formula for the multilinear extension of
Equations ([2) and ([E3) for the sigma orientation congruent product ® of ¢OC, 4
given in Definition to arbitrary multivectors.

The next lemma provides a formula for the sign factor function in terms of
the two basis blade factors and the resultant basis blade of their Clifford product
based on the relationship between the Clifford product of two basis blades and the
symmetric difference of the sets of basis vectors “in” each of them.

Lemma 6.6. For any er,e; € Blyg, if T = bset(er), J = bset(es), and K =
bset(e; oey) = bset(e; ® e;) € bset(+£Blg), we may write the sign factor function
o of Definition 63 as

(6.4) oer,67) = (—1)3 DI HUHD) #(T)+#D)+4T)~#()+2),

Proof. As is well known, if A denotes the symmetric difference operator on sets,
and \ denotes the set difference operator, then for all finite sets Z and J

(6.5a) INT =(TUJ)\(ZTAJ) and
(6.5b) #INT) = ST +#(7) - #T AT

Also for any e, ey € Blyg we have
(6.6) bset(er) A bset(e;) = bset(e; o e;) = bset(er ® e ).

Then it is straightforward to rewrite Equation (G3) of Definition EHlas Equation

©). O

In all the above we have had bset(e; o e;) = bset(e; ® e;) € bset(£Blg) =
P(A)* for any er,e; € Bly, thus ensuring that o(er,ey) is well defined as a
closed operation. Since generally the Clifford product of arbitrary (not necessarily
basis) blades is no longer homogeneous, we may as well consider next the Clifford
and orientation congruent products of homogeneous multivectors (which are not
necessarily blades).

The form of Equation (E4) for the sign factor function o is suitable for gener-
alization from products of basis blades to products of homogeneous multivectors.
Simultaneously we parametrize o by a grade index so that it is useful when A o B
is a general multivector rather than a blade in +Bfg. With these changes in the
definition of the sign factor function of basis blades o(er,ey) in Equation {E3) of
Definition we obtain the definition of the sign factor function of the grades of
homogeneous multivectors ot(r, s) in Equation ([E8) of the next theorem.

42Here we are using the symbol & for the product of the algebra cOC, 4 at least until we prove
that it is identical to the product ® of the orientation congruent algebra OCp 4.

42Since e; and e are basis blades, e; o ey € +Blgp. In other words, +Bls is closed under
any of the exterior, Clifford, or (sigma) orientation congruent products.

430r, equivalently, bset(e; o ey) = bset(e; ® ey) C A.
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Theorem 6.7. For any homogeneous multivectors A,, B, € 0OC,, , and Cl,, 4, with
subscripts indicating their grades, the multilinear extension of the product ® of the
sigma orientation congruent algebra oOCyp, 4 given by Definition [ is

r+s r+s
(6.7) A, ®Bo= Y (A ®@B)i= Y o0u(rs) (A 0By,

t=|r—s| t=|r—s|

where the sign factor function** o: Z[0,n] x Z[0,n] — + {1}, now a function of
the grades of A, Bs and parametrized by the grade t € Z[0,n] of the t-vector part
of A, o By, is given by

(68) O't(T, S) _ (_1)%[r+s—t][4rs+r+s—t+2].

Proof. The proof is immediate from Lemma G0 by the multilinearity of the Clifford
product and the linearity of the grade selection operator. 0

Using Equation (G7) to evaluate the right hand side of the next equation we
finally obtain an expression for the sigma orientation congruent product of multi-

vectors in terms of the sign factor function o.(r,s) and the Clifford product.
Corollary 6.8. For all A, B € 0OC,, 4

(6.9) A®B = Z (A), ® (B)s as evaluated by Equation (G).

Proof. The proof is immediate from Lemma G0 by the multilinearity of the Clifford
product and the linearity of the grade selection operator. 0

6.2. Equivalence of the o and the HS Orientation Congruent Algebras.
We next prove Theorem Bl This fundamental isomorphism theorem states that the
orientation congruent product of Corollary B8 derived from the sign factor function
and the fundamental decomposition of the Clifford product, and the orientation
congruent product, defined by the modified Axiom Sets [l through [VIIf, and the
new Axioms Set [VITNI, are equivalent. Our theorem and proof closely follows a
similar theorem of Lounesto and his proof [T23] pp. 282 f.].

In the following proof, as is allowed, we restrict the factors in all products to
be basis blades in Blg. So from another viewpoint we are directly proving an
implicit keystone theorem that the formula for the sign factor function given by
Equation (G3)) in Definition is correct. This equation is the foundation from
which all of Lemma B, Theorem [E7 Corollary B8 and the Fundamental OC
Product Decomposition Theorem (Theorem [ of Section [) follow.

Let # = {e1,...,ep,€pi1,...,€p1q} be an arbitrary signature-ordered, or-
thonormal, set of basis vectors for V" C CO, 4. In other words, for all e;,e; € #
and all integers 1 < ,5 <n, where n =p+ ¢,

6.10 5 +1, if 1<i<p, and
(6.10) €; —ei@ei—eioei—{_L fp+1<i<p+qg=n,and
eZ—@ej:el-oej:—ej©ei:—ejoei, lf’L¢j

THE FUNDAMENTAL cOC-OC ALGEBRA ISOMORPHISM THEOREM

44Here we are about to use the convenient notation Z[a,b] := {i|i € Z and a <i < b}.
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Theorem 6.9. The Clifford-like algebra cOC, 4 that is the multilinear extension to
all multivectors of the multiplication rule

e;®e;=o(er,ey) eroey,

between all pairs of basis blades er,e; € Blg, where o is defined by Equation
©&3) of Definition[6, is identical to the orientation congruent algebra OC, 4 with
product ® defined by the modified (primed) Aziom Setsll throughZIX, and the new
(unprimed) Aziom SetsVIIN and[IXl, along with the modified (primed) Definitions
A throughlZ®, and the new (unprimed) Definitions Il and 2T

Proof. The proof of Theorem consists of two main parts:

(1) the proof that sigma orientation congruent product of Definition [EHsatisfies
the primed Hestenes-Sobczyk axioms for the orientation congruent algebra
given in section B and

(2) the proof that the Hestenes-Sobczyk axioms for the orientation congruent
algebra given in section Bl determine the formula for sign factor function
given by Equation (E3]) of Definition

6.2.1. Proof that the Sigma Orientation Congruent Product Satisfies the Orienta-
tion Congruent Algebra’s Hestenes-Sobczyk Axioms. Actually, we explicitly prove
(1) for only the last four axioms in Axiom Sets [VIII and [VTTI} Axioms [VTLT] V1121
NTITT, and A proof for these four alone is sufficient because they are the
only axioms that are either material modifications of some unprimed axiom or are
entirely new.

It is sufficient to show that cOC, 4 is generated by n anticommuting vectors with
squares of +1 given by Equation (GI0), has a unit element, and that the blades in
Bl satisfy Axioms NILT] VTL21 and under the ® product of 0OCp 4.

Consider the first requirement. Since the product of cOC,, 4 is simply the Clifford
product multiplied by a sign factor of £1, it has the same set of generators % as
the Clifford algebra C¢, 4. Thus this requirement is fulfilled.

Next consider the second requirement. By definition, for any e; € Blg, 1®e; =
o(1,er) 1oer. But

0'(1, eI) = (_1)% #(@Nbset(er))[2 #(2) #(bset(er))+#(@Nbset(er))+1]
= (_1)0 = 15

Inspection of Equation (E3]) shows that o is symmetric in its arguments. Thus,
1®er = 1loe; = ey and both multiplications commute. Therefore, as required, the
unit of algebra cOC,, , exists; it is the scalar 1.

PROOF FOR Ax10M [VIL1]
We recall that Axiom IVIL11 requires that the outer product of multivectors is
associative: For all A, B,C € OC, 4 or Cl), 4

(ANBYANC=AN(BAC).

Restricting A, B, and C' to be homogeneous, with subscripts indicating their grades,
we obtain this equation:

(A, AB)ACy = A, A (Bs A Cy).
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Substituting the basis blades e; € #", e; € %°, and ex € A we have
(6.11) (erNej)Nex =er A(ej ANek).

Using Equation (B22) of Definition for the outer product we may write
(6.12) ((er ®ey)it; ® ek )itjtk = (€1 ® (€7 ® €K )jyk)itj+h-
Applying Equation ([E2) of Definition gives

(6.13) o(er,es) o(eroey,ex)((€roes)ris0CK)rysit =
U(eJaeK) U(eJ o eK,el) <el © <eJ © eK>s+t>r+s+t-

Now we let Z = bset(er), J = bset(es), and K = bset(ex) and use Equation
BE3) to perform the next two evaluations. On the left hand side, evaluating the
sign factor functions gives

(6.14) o(er,ey)-olejoey, ex) = (—1)z #INDRAD#I)+#INT)+1]

. (_1)% #(TAT)NK) 2 #(TAT) #(K)+#(TAT)NK)+1]

On the right hand side, evaluating the sign factor functions gives

(6.15) o(es, ex) olesoex,e) = (—1)2 #TRRHI) #()+#(TNK)+1]

(= 1)2 #TANDR AT AK) #(D)+#(TAR)ND)+1]

Using Equations ([G3b) and (0] we observe that if (and only if) at least one of
INJ,INJ,orINJ isnonempty, both sides of Equation ([GI3) are 0. In this
case the values of the sign factor functions are irrelevant.

KFZINJg, JNK, and ZNK are all equal to &, both sides of Equation ([EI3)
are nonzero and the (r + s+ t)-grade part of the Clifford products on the left hand
side of Equation (EI3) is equal to that on the right hand side.*” In this case the
question of equality in Equation ([EI3]) hinges only on the values of the sign factor
functions.

Examining the right hand sides of both Equations (GId]) and (GIH), we see that
the first “cardinality factors,” #(ZNJ) and #(J NK), in the exponent of the first
—1 are obviously 0 when ZNJ = J NK =ZNK = @. Thus, this first —1 raised
to the power zero becomes 1 in both Equation (GI4]) and ([GIH).

Consider now the first cardinality factor of the second —1 on the right hand side
of Equation [EI4)); it is #((Z A J)NK). We perform some elementary set-theoretic
manipulations?® on (Z A J) N K:

ZTAT)NK=[ZUuIN\ZnT)]NK
=@ZuI)NE@ZnInk
=[(ZuI)NKINnEZnT)°
=[(ZNnK)U(ITNK)INEZNT)E.

Since ZNK = J NK = &, by the expression in the last line above we find that
(ZAJ)NK = @. Therefore the first cardinality factor of the second —1 on the
right hand side of Equation ([EI4]) is 0. This makes that exponentiated —1 become

45For a proof see Reference B4 p. 11, Eq. (57)].
46We use the notation ZC for the set complement of T with respect to bset () ={e1,e2,...en}
as the universal set.
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1. Similar manipulations lead to the same conclusion for Equation (EIH). Thus,
the sign factor functions are all unity and we have proved the equality of both sides
of Equation (EI3)). This, in turn, implies that Equation (GIII) is true. Therefore,
Axiom[VILT] restricted to the set of basis blades Bz, is satisfied under the product
® of the sigma orientation congruent algebra cOC, 4.

PROOF FOR AX10M VIL.21

Axiom IVTL2] requires that the square of an r-blade and the product of the
quadratic forms of the vectors in it be equal. So we restrict formula (E3) for
the sign factor function o to two identical basis blades e;,e; € & and apply the
set-theoretic identity ZNZ =7 to get

U(e], e[) _ (_1)% #(bset(er))[2 #(bset(er)) #(bset(er))++#(bset(er))+1] )

Since #(bset(es)) = r, we obtain
oler,er) = (—1)37 @),
Since r(2r2 +r + 1) =r(r — 1) mod 4, we have
o(er,er) = (—1)27=1,

Therefore, e; ® e; = (—1)2"""Ve; o e;. However, (—1)27("Ve; is just the
usual formula for e;T the reversion of e;. Thus, we obtain

er®er = e]]L

=Q(ei,) - Qei;) - Qe;,).
Here we have let e = e;; A--- Aey; A--- Ae;, with all e;; € P basis vectors.

Therefore, Axiom [MIL2] restricted to the set of basis blades Blz, is satisfied under
the product ® of the sigma orientation congruent algebra cOC, .

ocey

PROOF FOR Ax10oM [VITL.Z

Axiom requires that within OC, 4, or its arbitrary extension by one di-
mension, for all nonempty subsets &7 of multivectors there exists a (nonunique)
nonscalar, unit magnitude blade w,y, called the counit of &7, which has the gener-
alized commutativity of right wg~complementation property for all multivectors in
. In addition, Axiom states that an extension of OC, ; by one dimension
always exists. So in the following proof the symbol £ for the basis set will refer to
either the original basis or its extension to % U { e, }, if necessary.*” Of course,
the meaning of Blz must also be modified to reflect any change made to that of A.

As is sufficient for the proof, we restrict & to be @ C & C Blg. We claim that
any basis blade e, € A" such that r = #(bset(e,,,)) is odd and

(6.16) bset(ey,,) = B U U bset(e;) for some @ C B C A
ercof
satisfies these requirements.
Before continuing we must first show that a set B that makes r = #(bset(ey,,))
odd always exists. If the union of the bset(ey) over & is already of odd cardinality,

4THere the subscript n + 1 is not intended to imply that Q(en+1) is necessarily negative and
neither is the symbol @ meant to imply that @ = @, ;41 rather than Q = Qp 41 4
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we may choose B = @. If it is of even cardinality, we may choose B = {e;} where
e; is any basis vector not in the union of the bset(es) over /. In this last case we
may have to choose B = {41}, where e, is the basis vector used to extend the
dimension of the original vector space V" to the odd number n + 1.

Next, preliminary to the heart of the proof, we show the alleged counit e,,,
satisfies the simpler requirements of Axiom [VITL2l Since we have managed to make
r = #(bset(e,,,)) odd by a proper choice of B, the condition that e, , must not
be a scalar is satisfied. Also, the requirement that e, , must have unit magnitude
holds because e, is a member of the set of basis blades Blz generated by the
orthonormal basis 4.

Next, as a lemma to the main proof that the sign factor function satisfies Axiom
IVIIT2l we prove that it satisfies Theorem This theorem states that, under
the same conditions as for Axiom e, commutes with all multivectors in
.

For Theorem let e; € Blg be some basis blade in «/. Also, let s be the
grade of e;. Then

e;®e,, =0(es e,,)esoe,, and

ewd @ eJ = O'(de, eJ) ewgy © eJ-

As previously observed o is patently commutative in its arguments. Therefore we
must show that ejoe,,6 =e,, cey.

At this point it is convenient to appeal to formulas involving the so-called fat dot
or modified Hestenes inner product [16} [61], [122, pp. 143 f.] of the Clifford algebra
Clp,q. So we first define this new inner product, then we provide an equation relating
it to the Clifford product.

The fat dot inner product is almost the same as the (unmodified) Hestenes inner
product. The only difference is that the Hestenes inner product is restricted to a
zero result when either operand is a scalar [84, p. 6, Eq. (18)], but the fat dot inner
product is not. Thus we have the following definition.

Definition 6.10. For all general multivectors A, B € Cl,, 4, the fat dot inner prod-
uct, written with a large centered dot e, is defined as

(6.17) AeB:= Z ((A)r o <B>s>\rfs\-

The next theorem relates the fat dot inner product to the Clifford product.

Theorem 6.11. Let A,,B, € Cl,, be blades written with subscripts indicating
their grades. Then by Definition each can be written as an orientation con-
gruent multiproduct, with any grouping into binary products, of r or s pairwise
anticommuting vectors. In particular, let Bs = by ©---©b; ©--- © bs where all
a; € V" and ai@aj = —a; © a; fO’I’ all 1 }é_]

with A, Ab; =0 for all 1 < i <s. Therefore r > s and

B,e A, =B,oA, and

(6.18) A,.eB,= A, oB;.

Proof. The proof follows from, Theorem [l the Fundamental Clifford Product
Decomposition Theorem and Definition. (I
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By Equation ([GI6), @ C bset(ey) C bset(e,,,). Therefore,
ejoe,, =ejoe,,
ewg{ © eJ - ewg{ i er
where the large centered dot e denotes the so-called fat dot or modified Hestenes
inner product of the Clifford algebra C¢, , [16] 1], [T22, pp. 143 £.].
Consider next the rule for commuting the operands of the Hestenes inner product

given by Harke’s paper R4 p. 6, Eq. (22)]. For homogeneous multivectors with
subscripts indicating their grades

(6.19) A.-By=(=1)°C""B, - A,, ifr>s,

where the small centered dot - denotes the Hestenes inner product. It is easily seen
that Harke’s derivation of Equation (1) also applies to the fat dot inner product.
Therefore we may write

(6.20) Ao B, = (-1)°C"")B e A,, ifr > s,

which is Equation ([EI9) with the fat dot inner product substituted for the Hestenes
inner product.
Finally, let A, = e, and B, = e;. Applying Equation ([E20) above for com-
mutation of the fat dot inner product, we see that
ejoe,, =€,,0€ey,

since r > s by the defining Equation (EI0) for e, and r = #(bset(e,,,)) is odd
by assumption. Therefore, Theorem BETZ restricted to the set of basis blades Blg,
is satisfied under the product ® of the sigma orientation congruent algebra cOC, 4.

Now we present the main part of the proof. Axiom VIIL2requires that the right
wg-complement commutes over the two factors and the result of an orientation con-
gruent product of multivectors: For all <7 that are nonempty sets of multivectors,
@ C o COCpg, all counits wy of &, and all A, B € o

A“?©B=A® B =(A® B)*.
It is again sufficient to restrict o/ to a set of basis blades @ C & C Blg. Then
the general multivectors A, B become the basis blades e;,e; € /. Let e € A"
and e; € #°. Let the counit e,,, defined by Equation {EIH) be ex € %'. Then,

substituting the cOC, , algebra product ® for the orientation congruent algebra
product ® in the last equation, we obtain

e ®de;=e;®e;F = (ef®ey)® .

By lowering the superscript ex in the compact wg-complementation notation of
the last equation we arrive at

(er®@erx)®ey=e;®(e;®ex)=(e;®ey)Dek.
Applying Equation ([G2) of Definition B3 to this last result gives the following three
equal expressions:
(6.21a) oler,ex) o(ejoex,ey)(ejoeg)oey,
(6.21b) olej,ex) o(ejoek,er) ero(eyoeg), and

(6.21c¢) oler,ej)-o(ejoey,ex)(efoey)oex.



EXTERIOR CALCULUS IN THE IMAGE OF ODD FORMS 101

The double Clifford products on the right side of all three expressions in Equa-
tion ([G2T]) are equal because the Clifford product is associative and because, as we
have already proved, the counit e,, = ex commutes with all multivectors in its
“generating” set /. So next we look at the sign factor functions in these expres-
sions.

Let 7 = bset(er), J = bset(ey), and K = bset(er). Then starting with Equa-
tion ([E3) of Definition we evaluate and simplify the sign factor functions of
expressions (C2Tal) and ([G2Id), each in turn, until we obtain two equivalent ex-
pressions. The analogous manipulation of expression ([E211) corresponding to what
we do to (GZTa) is left to the curious reader.

Evaluating the sign factor functions of expression ([E2Ial) gives

oler,ex) o(ejoex,ey) = (_1)% #(INK) 2 #(T) #(K)+#(ZNK)+1]

i (_1)% #UTARINT) 2 #(TAK) #(T)+#(TAK)NT)+1]

Using set-theoretic identities*® to simplify the above expression gives
o(er,ex) - alejoex,es) = (_1)% #(D[24(L) #(K)+#(1)+1]

(1) #INT) 2 (0T®) () +#(7070) 1]

Recall the identity #(j mIC) = #(T) — #(Z N J); also, #(/c mIC) = #(K) -
#(Z), since Z C K. Substituting these in the last expression produces
oler,ex) o(eoex,ey) = (_1)% #(D24(T) #(K)+#(1)+1]

. (_1)%[#(J)*#(Iﬂj)]-[2{#(0)*#(1)}#(J)Jr#(J)f#(ImJ)Jrl].
Since #(K) must always be odd, we may further simplify to

U(QI,GK) . O'(el o eK7eJ) = (_1)% #(I)[2#(I)+#(I)+l]

(= 1) BB —#END)] ROHT) #(I)H#(T)-#EINT)+1]

Multiplying out the exponents and simplifying them mod 2 gives

(6.22)  o(er,ex) - o(er0ex,e,) = (—1)FDHHI)H#T) #(I)+#T) #(I) #(TNT)]

(=1) 2 #FDFDH (L) 7 HDFDH L (_1)3 #ENDHEINT)-1],

We now shift attention to expression ([2Id) whose sign factor functions evaluate
to give

oleres) - oleraesex) = (~1) HINRFD A AN

) (_1)% #(ZAT)NK)2#(TAT) #(K)+#(TAT)NK)+1]
Removing the odd factor #(K), multiplying out and separating certain exponents,
replacing #((Z A J) N K) with #(Z A J), and applying mod 2 identities yields
o(er,ey) -oleroey ex) = (—1)FEIADN+H#D #(T) #(INT)]
(=1)2 #FENDHEINDH] L (_1)3 #TADHTAT) ]

48We use the notation ZC for the set complement of T with respect to the universal set
bset(2) = {e1,e2,...en} or {e1,e2,...€nq1}.
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Replacing the symmetric difference operator according to the identity #(Z A J) =
H#ID)+H#(T) —2#(Z N J) leads to

o(er,ey)-oleroey ex) = (—1)FDHHITHID) #(T) #INT)]
. (_1)% H#(INT)[H#(INT)+1]

- (=1) s H#D+#(T) -2 #@NID] #(D)+#(T) -2 #(INT)+1]
Multiplying out exponential terms and simplifying produces

(6.23) o(er,ey)-o(ejoey,ex) =
(_1)[#(Z)+#(J)+#(I)#(J)+#(ZOJ)+#(I)#(J)#(Zﬁj)]

(=12 OO ()3 #DFDH L (_1)z #EINDH#EINT) ],

I leave to the reader the easy exercise of completing the proof by showing that
Equations [E22) and (G23]) in these last forms are equivalent. Assuming this done,
we have proved that, for the set of basis blades Blz, Axiom [VITL2is satisfied under
the ® product of the algebra cOC, 4.

This completes the subproof that is part (1) of the proof of Theorem the
proof that the sigma orientation congruent product of the basis blades in Blg
satisfies the orientation congruent algebra’s Hestenes-Sobczyk axioms.

6.2.2. Proof that the Hestenes-Sobczyk Axioms for Orientation Congruent Algebra
Determine the Formula for Sign Factor Function. Now we present the subproof that
is part (2) of the proof of Theorem [0 the proof that the orientation congruent
algebra’s Hestenes-Sobczyk axioms determine the formula for sign factor function.

We begin by examining the consequences for the sign factor function o of the
specific orientation congruent axioms and theorems that are either materially dif-
ferent from their Clifford algebra counterparts or completely new. Our logic is not
circular, since we can derive all the following rules without invoking the expression
for o given by Equation (E3) in Definition

Let er,e; € Blg be arbitrary basis blades with basis subsets Z = bset(ey) and
J = bset(ey) such that r = #(Z) and s = #(7). Then

(1) by using Axiom [VTLT1 the associativity of the orientation congruent outer
product, we obtain the rule: if ZNJ = @, then o(Z,J) =1 = (—1);

(2) by using Axiom [VIL2] the equality of the orientation congruent square of
a blade and the product of the quadratic forms of its vectors, we obtain the
rule:
ifZ7=7=7InJ,then o(Z,7) = (=1)27—1 = (=1)2 #ENIH#ITNT)~1],

(3) and by using Theorem[BT2, the ouniversal commutativity of wey, we obtain
the rule: if 7 C 7 and s = #(J) is odd, then o(Z, J) = (—1)lrstarr+D] =
(=1)2r(r=1) = (—1)z #ENDHFINT) 1],

From Rules (2) and (3) above we see that, in general, the sign factor function
o of Definition is written as (—1)¢ with an exponent e that contains at least
the term e = L #(Z N J)[#(Z N J) — 1], a mod 4 function of the of the two
basis subsets Z and J. We do not, however, need to find another expression for
any term in e that is obtained by using Axiom [VIIL2 the generalized <Zuniversal
commutativity of right we~complementation. Since Axiom involves only the
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same kind of subset relation that appears in Rule (3) above, it cannot modify the
term 2 #(Z N J)[#(ZNJ) — 1] occurring in e.

Only one other term, €o, is possible in the exponent e of the sign factor function.
That e; term is contributed by Rule (1) above. However, because Rule (1) is
conditional on the subset relation Z N J = &, any such term cannot modify the
term e; = 3 #(Z N J)[#(Z N J) — 1] contributed by Rule (2) which is conditional
on the subset relation Z = 7 =Z N J. This is because, for nonempty basis subsets
7 and J, the relation ZN J = @ is incompatible with the relationZ = 7 =7 N J.
Therefore, €5 is a mod 2, rather than a mod 4, function. As such, it can be expressed
by a sum of a constant and various terms with integer coefficients that are the
products of the cardinalities of basis subsets, where all cardinalities of basis subsets
are to the first power, not second or higher powers.

Additionally, the term €2 may, in general, be a function only of the cardinalities
of the sets Z, J, and Z N J. This is because the cardinalities of all relevant
basis subsets derived from Z and J by the elementary set theoretic operations
intersection, union, and complementation can be computed from the cardinalities
of T, J, and Z N J alone. However, the basis subset 7% N 7L derived from 7 and
J by elementary set theoretic operations is not relevant for determining es. To see
this consider that the basis set itself & (with cardinality n = p+¢) does not appear
independently of Z and J in any of Rules (1), (2), and (3) above.

We may further characterize the sign factor function o as symmetric. From
Theorem in Section B, the Clifford and orientation product compatibility of
compatible blades, we conclude that the sign factor function o of Definition
must be a symmetric function of its arguments: o(Z,J) = o(J,Z) for the basis
subsets Z, J C A of any basis blades.

We have now determined the sign factor function to be of the form o(Z,J) =
(—1)¢ where € = €1 + €2 is a symmetric function of the cardinalities of the relevant
basis subsets #(Z), #(J), and #(Z N J). Combining the above results, the most
general possible expression for €5 is

€2 = ao + a1 [#(L) + #(I)] + a2 #(Z N T) + a3 #(I) #(J)
+as #FINT)FHI) +#(T)] +as #(Z N T) #(L) #(T),

where the undetermined coefficients a; are integers. Finally, the most general pos-
sible expression for € is

€=¢€1 + €

= SHEINDHEINT) 1]+ e

SHEINDHINT) -1
+ a0+ ar[#(Z) +#(T)] + a2 #(TNT) + a3 #(I) #(T)
IO TV HD) + #T)) + a5 #INT) #D#I),

where the undetermined coefficients a; are integers. Next we examine the implica-
tions of Rules (1), (2), and (3) for the values of these six coefficients.
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First, under the condition Z =7 =Z N J of Rule (2) we have

€= %#(Imj)[#(zmj)—l]

+ao +a10] + ax #(Z NJ) + a3 #(Z) #(J)
+as #ZNT)0] + a5 #(Z N T) #(T) #(T),

where the undetermined coefficients a; are integers. Since, in this case, by Rule (2)
e=1#ITNT)#(ZNJ)—1], it follows that ag = 0 and as + az + a5 =0 mod 2,
while a1 and a4 remain free.

Next, under the condition (Z N J) = & of Rule (1) we have

€ = a1[#(ZT) + #(T)] + a2[0] + a3 #(T) #(J)
+ a4[0] + as[0],

where the coefficients a; are integers, ap = 0, and a2 + a3 + a5 = 0 mod 2. Since,
in this case, by Rule (1) e = 0, it follows that ap = a1 = a3 =0 and as + a5 =0
mod 2, while a4 remains free. Therefore, we have

=g #HINDHINT) -1
L ORI N HD) #T) + 1] + aa #T 0 T HD) + #(T))

where the coeflicients b := as = a5 and a4 are integers.
Finally, under the conditions, Z C J (or equivalently ZNJ =7) and s = #(J)
is odd, of Rule (3), and after mod 2 simplification, we have

1

¢ =5 #D)H#(I) — 1 + b[0] + as #(2),

where the coefficients b and a4 are integers. Since, in this case, by Rule (3) € =
L #(T)[#(T) — 1], it follows that as = 0, while b remains free.
We have now obtained the following expression for e:

1
(6.24) e=5#INIHINT) -+ b#INT)H#I)#(T) + 1],
where only the integral coefficient b := as = a5 remains undetermined. To de-
termine the value of b consider the results ejo o0 ex3 = —eg3; from Table and

e12 © ez = e3; from Table BB In this case from Equation (E24]) above we have
e = b[5].

On the other hand, from Tables BEH and B.Gl we know that € = 1 mod 2. Therefore,
b =1 mod 2. Thus from the modified Hestenes-Sobczyk axioms for the orientation
congruent algebra of a quadratic form given in [l we have derived the following final
equation for e such that the sign factor function of Definition iso=(-1)%

(6.25) €= %#(Zﬂj)[#(fﬂj)—1]+#(Zﬂ~7)[#(1)#(u7)+1],
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To finish the second subproof we easily manipulate the expression for € in Equa-
tion ([EZH) above into the exact form given by Equation (G3]) of Definition

= #INTHDHI) +1+ 5 #ENDFENT) ~ 1
= #ENT)HOHI) + 5 #HINTHEINT) +1]
= SHEINT)RHDHT) +#ETNT) +1].

After having now finished both its first and second subproofs, we have completed
the proof of Theorem that the Clifford-like sigma orientation congruent algebra
0OCp,q and its product ® defined by the multilinear extension of Equations (G2
and (E3) in Definition are identical (isomorphic) to the orientation congruent
algebra OC, , and its product © defined by the primed axioms of Section O

Generally, from now on we drop the word sigma and simply refer to the ori-
entation congruent algebra and orientation congruent product, and substitute the
symbols OC and ® for cOC and ®, respectively. However, to explicitly indicate that
the orientation congruent product is being computed as the product of the sign fac-
tor function and the Clifford product we may refer to the orientation congruent
product in sigma form.
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7. COMPUTER SOFTWARE IMPLEMENTATIONS OF THE ORIENTATION
CONGRUENT ALGEBRA

Indeed, T have to admit my own frustration in not being able to do
more than a line or two of computations without making a serious
mistake. I believe that what is most needed in the area today is
an efficient computer software package for carrying out symbolic
calculations in geometric [Clifford] algebra.

Garret Sobcezyk [169] p. 18]

Here we give some algorithms for computing the orientation congruent product
using existing computer software packages. The practical necessity of computer
aided computation of Clifford algebra operations has been noted in the above quote.

By converting the Clifford product to the orientation congruent product, the
sign factor function provides a way to compute the later either automatically or
manually. The algorithms exploiting this fact that we give here are as simple as
possible within the limitations of the software packages used. FExcept for a few
elementary remarks we will not investigate the efficiency of these methods.

Of the many possible computer software packages available we will discuss algo-
rithms for just two prototypical examples: Mathematica and Clical.* Mathemat-
ica is adaptable to do Clifford algebra calculations through programming; on the
other hand, Lounesto’s MS-DOS program Clical is specifically designed to do them
with built-in functions.

Of the four implementations discussed, only one, using Mathematica, does full-
blown, basis-free symbolic manipulation of Clifford or orientation congruent algebra
expressions. Although, of course, the other two Mathematica implementations
(after major revision) could, but the Clical one could never do so. Nevertheless,
all these implementations are useful within their limitations—even those in which
multivectors must be expressed as linear combinations of basis blades.

An algorithm suited to Mathematica, which is a completely programmable, sym-
bolic computer algebra system (CAS), will be different than one suited to Clical,
which is a numerical software package that can only run scripts without loops or
conditional branches. Also Clical is limited to dimensions n < 10. Consequently, in
Mathematica, computation of the orientation congruent product may be done by
straightforward translation of the fundamental decomposition in Theorem [Z2below
into a program of nested loops. While in Clical, the loops representing the fun-
damental decomposition must be rolled out into a sum of functions whose number
and definition varies with the dimension of the base vector space V.

First, we derive the fundamental decomposition theorem of the orientation con-
gruent product in sigma form; using it gives a basic efficiency improvement over
an algorithm based on Theorem 71 Next, we present two Mathematica imple-
mentations that use the fundamental decomposition theorem as well as one that
is fully symbolic and basis-optional. Last, we discuss the Clical implementation of
the orientation congruent product as a sum of predefined functions.

49This software is available online from the sources in Reference [T20)].
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7.1. The Fundamental Decomposition Theorem of the Orientation Con-
gruent Product. First we repeat Theorem and Corollary for easy ref-
erence.’® Then we give the fundamental decomposition theorem for the Clifford
product and derive the corresponding theorem for the orientation congruent prod-
uct from it.

Theorem 6.7. For any homogeneous multivectors A,, B; € 0OC, 4 and Cly, 4, with
subscripts indicating their grades, the multilinear extension of the product ® of the
sigma orientation congruent algebra ocOCp 4 given by Definition [623 is

r+s r+s
(6.7) A, ®Bi= Y (A, @®@B)i= Y ou(rs) (A 0By,
t=|r—s| t=|r—s|

where the sign factor function* oy: Z[0,n] x Z[0,n] — + {1}, now a function of
the grades of A, Bs and parametrized by the grade t € Z[0,n] of the t-vector part
of A, o By, is given by

(6.8) oy (r, S) _ (_1)%[T+s—t][4rs+r+s—t+2].
Corollary 6.8. For all A, B € 0OC,, ,
(6.9) A®B = Z (A), ® (B)s as evaluated by Equation (G).

THE FUNDAMENTAL CLIFFORD PRODUCT DECOMPOSITION THEOREM

Theorem 7.1. For all homogeneous multivectors A,, Bs € Cly, 4 with subscripts in-
dicating their grades their Clifford product may be written as a sum of homogeneous
multivectors

Ar o Bs = <Ar o Bs>\r75\ + <Ar o Bs>\r75\+2 + -+ <A7‘ o Bs>r+s

= Z <A7‘ o Bs>|r75|+2ku
=0

(7.1)

where m = 4(Dy(r + s) — |r — s|) with index function
i, if0<i<n, and
2n—1, ifn <1< 2n.

(7.2) D, (i) = {

Proof. A proof of the infinite n version of Theorem [[] is sketched by Hestenes
and Sobczyk in their book [97, p. 10]. Harke also mentions it [84] p. 10, Eq. (48)].
This finite n form of the fundamental Clifford product decomposition is found in
Conradt’s paper 8, Eqgs. (3), (4)] or his book contribution A9, Egs. (3), (4)] O

In the next theorem we display the result of inserting the above formula (B3] for
ot(r, s) as a multiplier of the grade selected Clifford products in the fundamental
decomposition of the Clifford product from Equation [Z1l). Theorem presents
the fundamental decomposition of the orientation congruent product in terms of the
sign factor function o(r,s) and the Clifford product (or, briefly, in sigma form).

501, reading this theorem and corollary please recall that after proving the algebra isomorphism
Theorem [ we have now dropped the word sigma to leave simply orientation congruent and
substituted the symbols OC and © for cOC and ®, respectively.
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THE FUNDAMENTAL OC PRODUCT DECOMPOSITION THEOREM
IN SIGMA FORM

Theorem 7.2. For all homogeneous multivectors A,, Bs € OCp 4 and Cly q, with
subscripts indicating their grades, their orientation congruent product may be writ-
ten as a sum of homogeneous multivectors

Ar © Bs = Olp—s| (Ta S) <AT o Bs>|r—s|
+ O'|rfs|+2(7aa S) <Ar © Bs>\r75\+2 + -
(73) + Opyps (ru 3) <Ar o Bs>r+s

= Z U\r75\+2k(7‘7 3) <Ar © Bs>\r75\+2k
k=0

where the summation limit m and the index function D, (i) are the same as for

Equation (1)), and o4(r,s) is given by Equation X)) in Theorem [0

Proof. The proof is immediate from Lemma and Theorem [Tl by the multilin-
earity of the Clifford product and the linearity of the grade selection operator. [

The number of grade selections (and consequent orientation congruent product
evaluations) is reduced by at least min(r, s) when Equation (Z3]) from Theorem
above is employed instead of Equation ([@7). Using the index function defined
in the theorem, D, (i), to determine the upper summation limit, m, reduces the
number of products computed even more than the lower bound of min(r, s).

The Mathematica function 0CpD given below in Figure[[Tlachieves this maximum
efficiency. 0OCpD is defined in terms of functions from the package Clifford which
does not require a dimension n to be declared. Therefore, the parameter n of D, (7)
is set equal to the highest index of any of basis vectors in A, or Bs. Using this value
for n has exactly the same effect on the computational efficiency of a fundamental
decomposition based algorithm as would using a value that is the dimension of any
base space V'™ that allows both A, and By to be nonzero.

However, this is possible only when multivectors are expressed as linear combi-
nations of basis blades, as is done in the package Clifford. If the dimension n is not
fixed or known, using a basis-free algorithm based on the fundamental decomposi-
tion extracts a penalty of inefficiency. Then we must fall back on the least efficient
basis-free strategy, abandoning the index function and simply setting m = r + s.
Still, in comparison with Equation (E7), the number of evaluations of Clifford prod-
ucts is reduced by min(r, s) in absolute terms. In the limit of infinite min(r, s), the
fractional reduction is one half.

7.2. OC Computations in Mathematica with Clifford. 1 have programmed
Equation ([C3)) in a Mathematica notebook as the external function 0CpD of Figure
[[1 This function and some auxiliary ones (not given) are based on a slightly
modified version of the existing package Clifford. This package is internally titled
“Clifford Algebra of a Euclidean Space” by its authors Oscar G. Caballero and
José Luis Aragén Vera.’! It computes Clifford algebra and quaternion operations
in terms of the basis blades constructed from an orthonormal set of basis vectors
denoted by e[1],e[2],...,e[n].

51This package is available online in two versions from the sources in References and [39].
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(k- sokokok ok ok ook ook oKk ok oKk KKK kKKK KKK SRR KKKk Kk K % )
(* Define OCpD ver. 1 *)
(*  Orien. Cong. Product in Fund. Decomposition Form  *)
(G kokokok ook ok ok ook ook oK oK ok ook Kok ok oK Kok Kok KooK KoKk KooKk Kok Rk Kok K % )
ClearAll1[0CpD]
Remove [0CpD]
OCpD[x_, y_] := Module[{xGradeMin, xGradeMax, yGradeMin, yGradeMax,
xyDimMax, Dind, TempSum, r, s, kI,
xGradeMin = GradeMin[x]; =xGradeMax = GradeMax[x];
yGradeMin = GradeMin[y]; yGradeMax = GradeMaxl[y];
xyDimMax = Max[DimMax[x], DimMax[y]];
Dind[i_Integer, n_Integer] :=

Which[
0<=1&& i< n, i,
n<=1ié& i<=2mn, 2n-1
1;
TempSum = O;

r = xGradeMin;
While[r <= xGradeMax,
s = yGradeMin;
While[s <= yGradeMax,
k = Abs[r-s];
While[k <= Dind[r+s, xyDimMax],
TempSum += SFac[r,s,k] Gradel[Gpl[Gradel[x,r], Gradely,s]],k];
k=k+ 2
1;
s=s +1
1;
r=1r+1
1

TempSum

FIGURE 7.1. External Mathematica Function 0CpD. This function
gives the OC product based on the fundamental decomposition
theorem, Theorem [2]

I have also programmed Equation ([Z3)) as a Mathematica function internally de-
fined within an altered version of the Caballero and Aragén Vera package Clifford.
This function 0Cp (Figure below) is a directly modified form of the package’s
definition of Gp. It computes the orientation congruent product by a straightfor-
ward use of the sign factor function as a multiplier defined by the assignment
sff=(-1)"(gu (2 g1 g2 + gu + 1)/2). Since the loops needed to implement
Theorem are already built into the definition of Gp, the 0Cp function runs
much more quickly than the external function 0CpD of Figure [11



110 DIANE G. DEMERS

(* Begin OC Product Section *)
OCProduct[ _] := $Failed
0CProduct [ml1_,m2_,m3__] := tmp[0CProduct[ml,m2],m3] /.
tmp->0CProduct
0CProduct [m1_,m2_] := ocprod[Expand[m1],Expand[m2]] //
Expand
(* The next 3 assignments define the alias OCp. *)
0Cpl[ _] := $Failed
0Cplm1_,m2_,m3__] := tmp[OCp[ml,m2],m3] /.
tmp->0Cp
0Cp[m1_,m2_] := ocprod[Expand[m1],Expand[m2]] //
Expand
ocprodla_,y_] := ay /; FreeQla,e[_7Positivel]
ocprod[x_,a_] a x /; FreeQla,e[_7Positive]l]
ocprod[x_,y_] Module [{
pl=ntuple[x,Max[dimensions[x] ,dimensions[y]]],q=1,s,r={},r1={},
p2=ntuple[y,Max[dimensions[x] ,dimensions[y]]],
gl=grados[x],g2=grados[y],gu,sff},
gu=pl.p2;
sff=(-1)"(gu (2 gl g2 + gu + 1)/2);
s=Sum[p2[[m]]*p1[[n]],{m,Length(pl]-1},{n,m+1,Length[p2]1}];
ri=pl+p2;
r=Mod[r1,2];
Dol If[r[[il] == 1, q *= el[il];
If[r1[[i]1] == 2,
q *= bilinearform[e[i],e[i]]],{i,Length[r1]} 1;
(=1) "s*qg*sff ]
ocprodla_ x_,y_] := a ocprod[x,y] /; FreeQ[a,e[_7Positive]]
ocprod[x_,a_ y_] := a ocprod[x,y] /; FreeQla,e[_7Positive]]
ocprod[x_,y_Plus] := Distribute[tmpl[x,y],Plus] /. tmp->ocprod
ocprod[x_Plus,y_] := Distribute[tmp[x,y],Plus] /. tmp->ocprod
(* End of OC Product Section *)

FIGURE 7.2. Internal Mathematica Function 0Cp. This de-
fines the OC product as a modified version of the Clifford package’s
definition of the function Gp.

7.3. OC Computations in Mathematica with GrassmannAlgebra. John
Browne has developed the Mathematica package GrassmannAlgebra [30] to trans-
late the many operations of Hermann Grassmann’s calculus of extension into a
modern computer system. This powerful package provides a fully symbolic CAS
that allows, but does not require, the use of a basis and that can accept general
metrics.
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John Browne has derived the following function for the orientation congruent
product [B2]. It is based on the generalized Grassmann product A of the package.
A

Min[m, k]
(7.4) aef= Y (—1)W<k+1>(am)
m )\ k =0 m Mk

In Browne’s package and book [31] the o and ﬁ above are called elements (of a

multilinear space). This term refers to a general multilinear object, but it implies
that the object is not specifically given a geometric interpretation.

Using a general metric, Browne has also demonstrated the facility of his package
for transforming the entries in the multiplication table of OCs into expressions
containing the exterior product and the various forms of inner product available
in GrassmannAlgebra [32]. His presentation of these results in a Mathematica
notebook required 35 pages to print onto letter size paper.

7.4. OC Computations in Clical. The orientation congruent product may also
be calculated in Clical, although much less elegantly than in Mathematica, by
rolling out the nested loops of a program based on its fundamental decomposition.
Let A,,B; € OCp4 be blades. Then the fundamental decomposition theorem,
Theorem [ states that the product A, ® By is not necessarily homogeneous. This
theorem is naturally parametrized by the pair of grades (r, s) of A, and Bs.

However, the tables below, and the functions derived from them, are instead
naturally parametrized by the dimension n = p 4+ ¢ of the base vector space of
a given Clifford algebra. This is because in Clical the dimension of the Clifford
algebra Cf, , in which one will calculate is fixed by first declaring its signature
(p,q). Also the sign factor function o is dependent on three grades: r, s, and ¢,
where ¢ is the grade of the t-vector part of the product, (4, ® Bs);.

Therefore, for Clical we define a sequence of winnow functions each of which is
a sum of terms of the form o:(r, s) (A, o Bs)t = (A, © Bs)s. The order of one of
these functions is defined to be the lowest dimension that allows all its terms to be
(potentially) nonzero. Then, the sum of these functions up to order n contains only
the grade-selected parts of the product (A, ® By); that are just permitted by the
dimension n. Therefore, in general, the summands o/, 4.2 (7, 8) (A © Bs)|p—s| 42k
in the fundamental decomposition of A, ® B; in sigma form for a given r and s
appear in several winnow functions of different orders.

Let the parameter ¢ represent the selected grade of an orientation congruent (or
Clifford) product as in (A, ® By);. Then, quite generally,’? we define the integer k
to be one half the reduction of the grade of the product from the sum of the grades
of its factors:

1
(7.5) k= 5(7“—}—5—1%).
We may also express this relationship as

(7.6) r+s=1+2k.

52FEquation ([Z3) is seen to be the natural generalization of Equation (E5H) with Equation (B4)
applied to it, if we let A, = e; and Bs = e; with e;,e; € %", and A = bset(e;), B = bset(e;),
and C =bset(e; @ ej), and k=#ANB, r =#A, s =#B, and t = #C.
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As a guide to defining the sequence of winnow functions introduced above we
construct tables, one for each integer m > 0, that display the values of ¢, k, r + s,
and the pairs of grades of factors (r, s), whose products (A, o Bs): may first become
nonzero when the dimension of the base vector space n is equal to m. The rows in
these tables are ordered from top to bottom by increasing t. We order the pairs of
grades (7, s) in a row from left to right by increasing r. Of course, we also require
that all values in these tables satisfy ¢, k,r, s € Z[0,m].53

Four examples of these tables are given below as Tables [Tl [C2 [C3] and [C4] for
m equal to 2, 3, 4, and 5, respectively. We will ignore the lining out of some terms;
this, as well as the use of bold fonts, will be explained later.

TABLE 7.1. The grades of factors and products that first may be
nonzero when the dimension n = m = 2. The text explains the
lined out pairs of factor grades.

TABLE 7.2. The grades of factors and products that first may be
nonzero when the dimension n = m = 3. The text explains the
lined out pairs of factor grades.

t k r+s| (r,s)

0 3 6 |53

L2 5 | &3 82

2 1 4 183 Y &

3.0 3 463 &2 &FH &Y

TABLE 7.3. The grades of factors and products that first may be
nonzero when the dimension n = m = 4. The text explains the
lined out pairs of factor grades.

t k r+s| (r,s)

0 41 8 &8

L3 7 |84 43

2.2 6 |44 (33 &

315 | (53 B2 4

40 4 [464 3 & &H &9

The italicized clause occurring two paragraphs up may be put another way: for
one of these tables m is the minimum value of the dimension n that permits any
row to exist; that is, that allows all grade selected products (A, o B); resulting

53Here we have used the convenient notation Z[a,b] := {i |i€ Z and a <i < b}.
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TABLE 7.4. The grades of factors and products that first may be
nonzero when the dimension n = m = 5. The text explains the
lined out pairs of factor grades.

r+s (r,s)
10| £5-5
9 |45 54
B (1)) 53
(3,4) (43) &2
51 274 (3,3) 42 6

T W N = Of o+
S~ N Wk oY
gt O N o

from homogeneous factors with grades r and s given by all pairs displayed in a row
to be, in general, nonzero. Then it is easily seen that for each row in the m-table

(7.7a) m=r+s—k.

Applying Equation (ZH) we obtain

(7.7b) m=t+k5
These two equations may be rearranged to also give
(7.8a) r+s=m+k and
(7.8b) t=m—k.

Adding the last two equations and rearranging yields
(7.9) t=2m—(r+s).

We recognize the last equation as t = D,,(r + s) after applying the second
line of the index function D,, (i) definition in Equation ([L2) from the fundamental
decomposition theorem. This leads directly to the observation that each table is
constructed so that m <t < 2m.

This is also why, in general, a given pair of factor grades tracks along a course of
consecutive tables. Specifically, in agreement with the fundamental decomposition
theorem, if the pair (r, s) occurs in position (¢, j) in the m-table, it also appears in
position (i + 2,7 + 1) in the (m + 1)-table, if m+1 <r+s<2(m+1). (Here we
have anticipated the “matrix” interpretation of the next paragraph.)

The pairs of factor grades in each table may be indexed as (r,s); j so that they
constitute a “matrix”5® of ordered pairs in the last column of that table. Each row
of [(r,s),;] is aligned with the corresponding values of the parameters ¢, k, and
T+ s.

The row and column indices of this matrix satisfy 4,5 € Z[1,m + 1]. The row
index may be written in terms of the row parameter k by

(7.10) i=m—k+1.

54Equations @) and ([CZH) are the Clifford algebra analogues of the set-theoretic formulas
H#AUB=#HA+#B—-#ANB,and # AUB =# AA B+ # AN B, respectively.

55P’roperly, of course, the objects containing these indexed pairs should be called indezed tables
or arrays, since we are not defining matrix addition (let alone multiplication) for them. Also, we
let missing entries in the table become doubly O-valued entries (0, 0) in the “matrix.”
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Nonzero entries of each row of the matrix [(r, s); ;] must satisfy min(r, s) > k, in
addition to the already derived 0 < r, s < m and r+s = m+k with r+s € Z[m, 2m)|.
All matrix entries, including invalid ones that should be zero, are given in terms of
the row parameter k£ and the column index j by

(7.11) (r,8)ij = (k+j—1,m—j+1);;.

Solving Equation ([[ZIW) for k& and substituting in the first half of the pair on the
right hand side of Equation (ZII]) gives

(712) (T, S)i,j = (m —1 —|—], m —j + 1)1”‘.

Requiring that the first half of the pair on the right hand side of the last equation
satisfies 0 < r,; s < m yields

(7.13) j<i,

which expresses that the matrix [(r, s); ;] is naturally lower triangular.

We now begin to define, as an example, a sequence of winnow functions whose
sum is the orientation congruent product in an algebra of base dimension m =n =
p + g = 5. These definitions are valid for all multivector arguments A, B € OC,, .
We denote this product in the functional form oc(A, B) similar to the way it would
appear in Clical. Clical provides the grade selection operator which we need. But,
we write it in the usual way with angular brackets and a subscript indicating the
grade r to be selected as (A), rather than as it would be written in Clical as Pu(r, A).

It is convenient to start by defining two base winnow functions that include
terms that first become nonzero at a variety of dimensions. As such they are of
inhomogeneous order and may be called simply base functions. The first of these
base functions, ocbaseone(A, B), contains terms of lowest order zero; while the
second, ocbasetwo(A, B), contains terms of lowest order three. The functions of
homogeneous order start with ocdimfour(A, B) which as its name suggests is of
order four.

For the definition of ocbaseone(A, B) we need the orientation congruent left
and right contraction operators, =1 and r—, respectively. These may be defined by
the following equations®® written in terms of some operations and a constant®”
that are all available in Clical. Here both I and j represent the Clifford algebra
pseudoscalar.

A B=I"'o[(IoB)AA (in normal notation)

(7.14) oclcont(A,B) =3\ ((j *B) A7) (as in Clical)

A B = [BT A(AoI)]o It (in normal notation)

(7.15) ocrcont(A,B) = (BA(A* 1))/ (as in Clical)

The first winnow function ocbaseone(A, B) contains the (possibly null) terms
that, for A, ® By with homogeneous operands, are of extremum grade |r—s| or r+s

56These Equations ([ZId) and [ZIH) are derived and proved valid in Section B See Table
line (8).

57The constant j in these function definitions is predefined in Clical only for algebras Clp.q
of dimension n = p + ¢ > 3. Clical predefines another constant i for n < 2. The following
Clical script defines a variable jj which is the pseudoscalar in any dimension Clical can handle,
0 < n < 10 (semicolons are used here to indicate the end of a Clical script line):  jj = 0; jj =

3333 =33+ 1
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in the fundamental decomposition of the orientation congruent product. In other
words, it contains all orientation congruent inner and outer product terms found in
the orientation congruent product of general multivectors for any dimension n. In
particular, the orientation congruent products for dimensions n < 2 are completely
contained in it.

The base winnow function ocbaseone(A, B) is defined by®®

ocbaseone(A,B):= + A 7B+ Ar B — %<A_|B+AI_B>O
+ (A= (A)o) A (B = (B)o).

The Clifford product commutator clcom(A, B) is used in the definition the next
winnow function. The definition of the commutator is valid for any dimension n
and is given by

(7.16)

1
(7.17) clcom(A4, B) := §(A oB—BoA).

The second winnow function ocbasetwo(A4, B) includes all terms of the orien-
tation congruent product decomposition that are not contained in the base win-
now function ocbaseone(A, B) and that result from a product of factors at least
one of which is of grade two. Accordingly, it may be nonzero only when n > 3.
The commutator excludes all terms of orientation congruent products that are
also orientation congruent inner or outer products; these are already included in
ocbaseone(A, B). The commutator neatly replaces grade selection for this purpose.

The base winnow function ocbasetwo(A, B) is defined by

ocbasetwo(A, B) := — clcom(A, (B)2) — clcom({A)2, B)
(7.18a) + clcom({A)1, (B)2) 4+ clcom((A)2, (B)1)
+ clcom((A)s, (B)2),

or, equivalently,

ocbasetwo(A, B) := — clcom(A — (A); — %(Ab, (B)2)
(7.18b) .
— clcom({A)2, B — (B)1 — §<B>2)

We digress to explain the lined out pairs in [(r,s);j]. These are simply the
pairs of factors whose grade-selected product is either an inner product (in the first
column or the main diagonal) or an outer product (in the last row),’? together
with those pairs of factors at least one of which is of grade two. In other words,
these are all pairs of factors whose terms are included in the base winnow functions
ocbaseone(A, B) or ocbasetwo(A, B). In addition to lining out, a bold font is used
for the pairs of factors whose products are in ocbasetwo(A, B). The terms resulting
from these lined out factor pairs must be excluded from the higher order functions
we define next.

The statements above about which matrix entries are lined out may also be
expressed algebraically in terms of r and s in the following complementary form.

580ther equivalent expressions may serve as the definition of the function ocbaseone(A, B).
59The (7, 8)m,1 and (r, s)m,m entries with a scalar part are pairs of factors whose orientation
congruent product is at the same time both an orientation congruent inner and outer product.
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The factor pairs in [(7,s); ;] that are not lined out must satisfy the additional
conditions

(7.19a) r,s > 2,
(7.19Db) r,s < m, and
(7.19¢) r4s>m.

The winnow function of order 4 ocdimfour(A4, B) holds all terms of the orien-
tation congruent product decomposition that are not contained in the base winnow
functions and that first may be nonzero when n = 4. It is defined by

(7.20) ocdimfour(A, B) := — ((A)3 o (B)3)a.

As an example calculation we find the sign in Equation ([Z20) by evaluating the
sign factor function in Equation (GF]), repeated here,

(m’) Ut(’f’, S) _ (_1)§[r+s—t][4rs+r+s—t+2]
with the values in Equation (ZZ0) above. This gives

= (—1)s[B+3-2)[4:3:3+3+3-242]
= (_1)%[4][42} — (—1)% = 1.

The winnow function of order 5 ocdimfive(A, B) comprises all terms of the
orientation congruent product decomposition that are not contained in the base or
lower order winnow functions and that first may be nonzero when n = 5. It is

defined by
ocdimfive(A, B) := + ((A)3 0 (B)3)a
(7.21) — ((A)a o (B)3)s — ({(A)s o (B)a)s
+ ((A)a 0 (B)a)a-

Finally, summing all the above winnow functions (the base functions and the
winnow functions of order m < 5) gives oc(A4, B) which contains all terms of the
orientation congruent product decomposition that could be nonzero when n = 5
(as well as some that could be nonzero when n > 5).

oc(A, B) := ocbaseone(A, B) + ocbasetwo(A4, B)

7.22
(722) + ocdimfour(A4, B) + ocdimfive(A, B).

We end this section by deriving a formula for T, the number of terms in a
winnow function of order m > 4. First, consider the number of terms, lined out or
not, in a table of order m. Since there are m + 1 rows in an m-order table and since
it has a triangular shape this is just the sum of the first m + 1 positive integers

Smer = 5(m -+ 1)(m).

If we remove a count of the pairs that give rise to the outer product, those in the
last row of the table, and a count of the pairs that give rise to the inner product,
those in the first column and on the main diagonal, we get the following formula
for the sum of the first m — 1 positive integers

Sm—1= %(m —1)(m —2).
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Finally, we remove a count of the pairs with r = 2 or s = 2. Pairs with at
least one 2 in either position always occur in the last three rows of a table of order
m > 4. The pairs in the highest and lowest of these three rows are already excluded
because the are in ocbaseone(4, B). In a table of order m > 4 the middle row
always contains exactly two such pairs, neither of which are in ocbaseone(A4, B).
Thus, we must remove a count of two from S,,_1. Therefore, the formula for T;,,
the number of terms in a winnow function of order m > 4, is given by

(7.23) T, — %(m S )(m—2)—2.
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8. INNER PrODUCTS, CONTRACTION OPERATORS, AND DUALITY

Add a subsection on the geometric interpretation of the orientation congruent
contraction operators similar to Dorst’s [61], p. 43].

8.1. The Significance of the Contraction Operators. The left, _i, and right,
L, contraction operators of Clifford algebra are of theoretical and practical signifi-
cance. They are used theoretically, for example, by Ferndndez et al. [69, p. 15] in
an axiomatic exposition of the Clifford algebra C¢,. Their approach exploits the
following Cartan decomposition formula for the Clifford product of a vector and
multivector to deform the exterior algebra:

(8.1) Xou=XAu-+x_u foralleVandalluE/\V.

In the work of Fernandez et al., as well as this paper, the Cartan decomposition
formula is explicitly or implicitly the basis for a calculating method for the algebra
considered.®® We say “calculating method” because this approach does not give a
genuine axiomatization of OC, ,. Since under a basis change it is does not respect
the grading of the elements of the exterior algebra, this method falls short of an
axiomatic definition |51, p. 45]. Therefore, our GR axioms for the Clifford and
orientation congruent algebras of a nondegenerate quadratic form, strictly speaking,
define only a calculating scheme for or representation of these algebras’ products
in terms of the exterior product and the algebras’ contraction operators.

However, this type of axiomatic approach is related to the more fundamental
one of Chevalley who embeds the Clifford algebra as a subalgebra of the associated
exterior algebra’s endomorphism algebra through the Chevalley-operator represen-
tation (which Chevalley [44] based on the Cartan decomposition formula). In either
approach the contraction operators are crucial.

Lounesto [123], pp. 288-90] discusses the contraction operators while constructing
the linear isomorphism AV — C/(Q). On the practical side Lounesto [122, pp. 143
f.] points out the awkwardness of substituting the more symmetrical dot product
of Hestenes and Sobczyk [97, p. 6] in constructing proofs. Also Dorst in References
[60, p. 10], and [61) p. 47] repeats Lounesto’s complaint as well as discusses the
difficulties removed by using the contraction operators rather than the Hestenes
dot product in designing computer algebra systems for Clifford algebra. For more
motivational material see the references cited above as well as Lounesto [I21].

Because of the importance of the contraction operators, we present them for
both the Clifford and orientation congruent algebras. We give a parallel exposition
so that comparison between the two tracks may aid the reader’s understanding.

600f course, for the OC algebra of this paper we would need to substitute the left orientation
congruent contraction operator for the Clifford one in Equation &II).
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8.2. Fundamental Definitions of the Contraction Operators. Some intro-
ductory text.

Using the Clifford product, various researchers have defined a great number inner
products. For a survey of many of these inner products see Ian Bell’s website [IH].
However, we favor only three Clifford algebra inner products and their orientation
congruent analogues. We do define one other Clifford algebra inner product, the
Hestenes inner product, but only to translate results in the geometric algebra lit-
erature to our preferred inner products. In this paper we do not directly use either
the Clifford algebra Hestenes inner product or its orientation congruent algebra
analogue.

The Hestenes inner product is usually written using a small centered dot. It
is designed (particularly for B € R) to be additively complementary to the outer
product by satisfying the equations

aoB=aAB+a-B and
Boa=BAa+B-a

for all vectors a € V™ and all multivectors B € C¢,, , [97, p. 8], [84] pp. 8, 10]. Since
the outer product of a scalar and any multivector is equivalent to vector space scalar
multiplication, the Hestenes inner product must be restricted to a zero result when
either operand is a scalar [84 p. 6, Eq. (18)]. Thus, we may define it formally as

follows [97, p. 6], [84] p. 6].

Definition 8.1. For all multivectors A, B € Cl), 4

(8.2) A-B:= Z ((A)r o (B)s)|s—r| + 0. Hestenes inner product

r,s>0

For both the Clifford algebra and the orientation congruent algebra we prefer
three kinds of inner product: the so-called fat dot inner product or modified Hestenes
inner product [16, 6], [T22], pp. 143 ], the left contraction operator, and the right
contraction operator. Unlike the Hestenes inner product, the fat dot inner product
is not restricted to zero when either operand is a scalar. Recall that we have
adopted the convention that the negative grade projection of any multivector is
null: (A), := 0 for all » < 0. Then the Clifford algebra versions of these three inner
products are defined by the following equations.

Definition 8.2. For all multivectors A, B € Cl), 4

(8.3) AeB:= Z ((A)r o (B)s)|s—p|, Clifford fat dot inner product
(8.4) A B:= Z ((Ay, 0 (B)s)s—r, left Clifford contraction
(8.5) AL B:= Z ({A) o (B)s)p_s. right Clifford contraction

TS

The orientation congruent algebra versions of these three inner products are
defined analogously to the Clifford algebra ones by the following equations.

Definition 8.3. For all multivectors A, B € OC, 4
(8.6) A®B:=> ({A)r @ (B)s)s—r, OC fat dot inner product

T8
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(8.7) A B =Y ({A)y @ (B)s)sy, left OC contraction

(8.8) ArB:=> ({A)y @ (B)s)r_s right OC contraction

Harke gives the following rule for commuting the operands of the Hestenes inner
product in his paper [84) p. 6, Eq. (22)]. For homogeneous multivectors with
subscripts indicating their grades

(8.9) A.-By=(=1)°C""B, - A,, ifr>s.

Since Harke’s derivation of Equation (EI9) also applies to the fat dot inner product,
we may substitute it for the Hestenes inner product and write

(8.10) A.eB,=(-1)°C""B,e A,, ifr>s.

IMPORT form cllik.tex >k ok sk sk kK sk ok ok skokokoskokskokskoskskokokkok

The next theorem relates the fat dot inner product to the Clifford product.

Theorem 8.4. Let A, B, € Cl, 4 be blades written with subscripts indicating their
grades. Then by Definition[p.4 each can be written as an orientation congruent mul-
tiproduct, with any grouping into binary products, of r or s pairwise anticommuting
vectors. In particular, let Bs = b1 ©® - © b; © --- © by where all a; € V™ and
a;@a; =—a; ©@a; forall i #j.

with A, Ab; =0 for all 1 < i <s. Therefore r > s and
B,e A, =B,oA, and
A,.eB, = A, 0B;.

Proof. The proof follows from, Theorem [l the Fundamental Clifford Product
Decomposition Theorem and Definition. 1

(8.11)

END IMPORT form cllik.tex *¥#¥ skttt ook

Here we will give two definitions, based on Lounesto [123| pp. 288-90], of the
four contractions {left,right } x {C¢,OC}. See also Dorst [60, p. 8], for another
exposition of the first derivation, and Fauser [68, pp. 23 f.] for another version of
both. Let Table BJl define notations for the four contraction operators.

We assume that we have already made the extension from V™ x V™ to A V™ x
A V™ of the bilinear form® associated with a general (not necessarily nondegen-
erate) quadratic form @, perhaps, by means such as the references cited above
employ. A pair of angular brackets (e, ¢) will denote both the original, unextended
bilinear form and its extension.

A general contraction operator may be fundamentally defined as the dual or ad-
joint of a modified exterior multiplication with respect to some pairing,%? Depending
on the modifications made to exterior product this definition produces a different
contraction operator. The modifications required to produce a Clifford or orienta-
tion congruent, left or right, contraction operator involve only the reversion of some
of the terms. The pairing required is the multilinear extension of the bilinear form
associated with the quadratic form of the Clifford or orientation congruent algebra.

61This concept was introduced earlier by Definition oIl under the notation Bg(e,e).

625 pairing, or bilinear form over R, is defined as a bilinear map B:U X V' — R where U and
V are vector spaces over R [I92] p. 58]. See footnote [[A for a definition of bilinearity. An example
of such a pairing is the scalar product of multivectors in a Clifford algebra.
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The equations in Table give duality definitions of the four contraction oper-
ators using an extended bilinear form based on a nondegenerate (Q on V". When
viewing this and the other tables of this section, please recall that the notation
we use for the reversion of a multivector A is a superscript dagger as in Af, and
the notation we use for the grade involution of a multivector A is a overlying or
superscript circumflex as in Aor A,

A set of three equations may be derived from the duality definition of each con-
traction operator; or, conversely, a set of these three equations may be used define
the contraction operator that corresponds to it. These sets of three equations may
be used to reduce an expression involving the contraction operators to another
containing multivectors of lower grade than those in the original expression. Inter-
estingly, these reduction definitions are more general than the duality ones; they
allow the use of an extended bilinear form that is derived from a general, possibly
degenerate quadratic form.

The first equation in the set of three is the same for all four operators as is shown
in Table B3 The other two equations in the set vary by the operator according to
Tables B4l and

8.3. Derived Expressions for the Contraction Operators. Lounesto, in his
book [123] pp. 38 f.], defines the Hodge dual of a multivector for C¢5. He writes the
Hodge dual of a multivector A using a five-pointed star as a prefix xA, but we write
it instead using an asterisk either as a prefix *A or superscript A*. The operator
that produces the Hodge dual of a multivector, *, is commonly called the Hodge
star (or, simply, the Hodge) operator.

Lounesto’s definition, although stated for Cls, is immediately generalizable to
Cl,,q because it can be straightforwardly seen to be equivalent to the fourth equa-
tion on page 166 of Burke’s book [34] (but with multivectors substituted for differ-
ential forms). Therefore, we give the following general definition of the Hodge dual
operator. For all A, B € Cl,, ; and for all extended bilinear forms (e, e) derived from
a general, possibly degenerate quadratic form

(8.12) AA*B=BAxA=(A, B

Lounesto [T23], p. 39, fn. 6] states, while Benn and Tucker [I8, p. 28] derive, an
equivalent expression for the Hodge dual of a multivector in terms of the Clifford
product:

(8.13) *x A=A"=AT ol =A™

The Hodge dual may also be written in terms of the Clifford contraction operators
as

(8.14) *A=A"=AT J1=1"_ AT
For an r-blade A, the Hodge dual is also given by
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Employing these expressions for the Hodge dual in terms of the Clifford product
or contraction operators and some other results to be added to a later version of
this paper we may derive the equivalent expressions for the contraction operators
given in Table

| TO BE DEVELOPED FURTHER
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TABLE 8.1. Notations for the Four Contraction Operators.
Algebra Left Right

cl | L
oc A —

TABLE 8.2. Duality Definitions of the Four Contraction Opera-
tors. These definitions are valid for all u,v,w € A V", and for all
extended bilinear forms (e, ¢) derived from a nondegenerate qua-
dratic form.

Algebra Left Contraction Right Contraction
(4 (u Jv,w) = (v,ul Aw)  (u L v,w) = (u,w AT
oc (wnv,w) == w,wAu)  (urv,w) = (u,vAw)

TABLE 8.3. Reduction Definitions of the Four Contraction Oper-
ators: Part 1. These definitions are valid for all x,y € V™, and for
all extended bilinear forms (s, ¢) derived from a general, possibly
degenerate quadratic form.

Algebra Left Contraction Right Contraction

¢ xayi=(xy) x_Ly=(xy)

oc x Ty :=(x,y) xry:=(xYy)

TABLE 8.4. Reduction Definitions of the Four Contraction Oper-
ators: Part 2. These definitions are valid for all x € V", for all
u,v € A V", and for all extended bilinear forms (s, ¢) derived from
a general, possibly degenerate quadratic form.

Algebra Left Contraction

4 X J(uAv) =X Ju)Av+uA (x J0)

OC  x"(uAv):=uAXv)+ (xTu)AD

Algebra Right Contraction

4 (uAv)Lxi=uA(vLX)+ (UL X)AT

oc (uAvV)rx:=(urx)Av+aA(vrx)

123
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TABLE 8.5. Reduction Definitions of the Four Contraction Oper-
ators: Part 3. These definitions are valid for all u,v,w € AV",
and for all extended bilinear forms (e, ) derived from a general,
possibly degenerate quadratic form.

Algebra Left Contraction Right Contraction
4 (uAv) Jw:=u_(v_w) wiL (uAv):=(wLu)Lv
oc (uAv)Twi=u(vow) wr (uAv):=(wru)rwv

TABLE 8.6. Derived Expressions for the Four Contraction Opera-
tors. These expressions are valid for all u,v € A V™. The star *
represents the Hodge dual operator (see the text for details).

Algebra Left Contraction Right Contraction
) U _Jv UL v
) (vt L uh)T (vt Juh)T
) (uoh)t (uf =)t
) v ul vl u

ce

) [uA(vol) ol ! I 'o[(Iou)Av
) I to[Tov)aut (ol Al o Do Iy
) = u A=)} (e[ (uh) A0}
) #[(+ 7)) A uf] *HoT A (xu)]
) uv ur v

(vf —uf)t (vf 7 ul)t
(u aoh)f (ul o)
v ul vl L
oc
I to[(ITov)Aul] [vT A(uoI)] oIt
*u A (xv)] #[(x 7 tu) A ]
{1 (") A w3 {1t A}

)
)
)
13) {[un (vfoI)] ol 1}t {I o [(ITout) Av]}f
)
)
)
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9. SOME IMPORTANT FORMULAS

The work of Gibbs and then Dirac would have been considerably
simplified had Gibbs and Dirac even a fleeting acquaintance with
exterior algebra. Instead, exterior algebra ended up another missed
opportunity, as Freeman Dyson might say.

Gian-Carlo Rota [T52 p. 47]

Some introductory text at the beginning. More introductory text at the begin-
ning.

Citation test: Geometric Algebra for Computer Science by Dorst, Fontijne, and
Mann [63], Differential Geometry and Topology: With a View to Dynamical Sys-
tems by Burns and Gidea [37], Lecture Notes on Elementary Topology and Geom-
etry by Singer and Thorpe [I68|, The Design of Linear Algebra and Geometry by
Hestenes [94], Projective Geometry with Clifford algebra by Hestenes and Ziegler
[O8], The Dirac-Kdihler Equation and Fermions on the Lattice by Becher and Joos
[[2], Smarandache Non-Associative rings by Vasantha Kandasamy [T89] .

9.1. The Null Associator Predictor. As is standard, we use the term monas-
sociative in the sense “not necessarily associative.” Thus, the set of nonassociative
algebras includes the associative ones as well as the algebras that are not associa-
tive. Also, we use the word algebra to mean nonassociative algebra. We indicate
the product operation of a general algebra 20 by juxtaposition.

Definition 9.1. In the theory of nonassociative algebras the associator of any
three elements, u, v, w, of an algebra 2 is usually written with parentheses as
(u,v,w) [IB6, p. 13] or with square brackets as [u, v, w] [I02, p. 435]. However, we
prefer to write the associator in operator notation as asc(u,v,w). The associator
is a trilinear function [T02, p. 435] that is defined by

asc(u, v, w) = (uv)w — u(vw),
for all u,v,w € 2A.

In any algebra 2, the following statements are equivalent:

e The algebra 2 is associative.
e All triples in 2 are associative.
e The associator is null, asc(u, v, w) = 0, for all (u,v,w) € A>.
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9.2. Groups, Loops, and Algebras. Hamilton’s quaternions form an algebra H
which is associative, but not commutative. It can be defined from the vector space
of all elements ¢ = w + zi+ yj+ zk where w, z,y, z € R, by taking 1 as the identity
element and enforcing these equalities: ij = —ji =k, jk = —kj =i, ki = —ik = j,
and ii = jj = kk = —1. We can derive a couple of groups from this algebra by
defining the group operation to be quaternion multiplication and the group set to
be a particular subset of H.

Example 9.2. By restricting the set of elements of H to the set +%} = ({1} U
P), which contains the elements, and their negatives, in the union of the set {1}
containing the identity and the set %y of standard basis elements of H, we obtain
the order eight quaternion frame group T'(H, +%};). Thus, the following set com-
prises the elements of the quaternion frame group: I'(H, +4};) = {£1, +i, £j, £k}.

The quaternion line group T'(H,R*%%) is also derived from Hamilton’s quater-
nion algebra H.

Example 9.3. By restricting the set of elements of H to the set R® %}, of all nonzero
real multiples of the set %} defined above in Example @2 we obtain the infinite
quaternion line group T'(H,R*4Y). Thus, the following set comprises the elements
of the quaternion line group: I'(H,R*4}) = {a, ai, aj,ak | « € R®* =R\ {0}}.

Example 9.4. By restricting the set of elements of the Clifford algebra C/, 4
to the set R'%&pyq of all nonzero real multiples of its standard basis blades,
we obtain the infinite Clifford line group I‘(Cép’q,R‘%cAlp,q). Thus, the follow-
ing set comprises the elements of the Clifford line group: I‘(Cfp,q,R'%CAZP J) =
{a,aeq,aeq, ..., ae,, ae1z,0e1s, ..., 012, | a € R®* =R\ {0}}. ,

Example 9.5. The Clifford blade group operator S is also known as the (greater)
delta product A [I4] 26l 27]. By restricting the set of elements of the Clifford
algebra Cl,, to the set Bl of all its blades, we obtain the infinite Clifford blade
group T'(Cl,,, Blcy, ,3). Thus, the following set comprises the elements of the Clifford
blade group: I'(Cl,,, Blcy, ,3) = {a,vi,viovao---ovo0---v, | € R®, v; #0, v; €
(Clp)r, r € Z[2,n], and v, 0 v; = —v, ov; for all i # j}.

MacFarlane’s hyperbolic quaternions form an algebra M which is neither asso-
ciative nor commutative [125, 126, 200]. It can be defined from the vector space of
all elements ¢ = w+xi+yj+ 2k where w, z,y, z € R, by taking 1 as the identity el-
ement and enforcing these equalities: ij = —ji=k,jk=-kj =1, ki= -1k =j,
and i1 =jj = kk = 1. The crucial difference from Hamilton’s quaternion algebra
is the positive sign of 1 in the final chain of equalities. We can derive a couple of
loops from this algebra by defining the loop operation to be hyperbolic quaternion
multiplication and the group set to be a particular subset of M.

Example 9.6. By restricting the set of elements of M to the set +%}; = £({1} U
Pu), which contains the elements, and their negatives, in the union of the set {1}
containing the identity and the set %y of standard basis elements of M, we obtain
the order eight hyperbolic quaternion frame loop A(M,+2};). Thus, the following
set comprises the elements of the hyperbolic quaternion frame loop: A(M, +%};) =
{£1,+i, 4, k.

The hyperbolic quaternion line loop A(M,R*%;) is also derived from MacFar-
lane’s hyperbolic quaternion algebra M.
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Example 9.7. By restricting the set of elements of M to the set R*%},; of all
nonzero real multiples of the set %), defined above in Example @0 we obtain
the infinite hyperbolic quaternion line loop A(M,R*%};). Thus, the following set
comprises the elements of the hyperbolic quaternion line loop: A(M,R®*%}) =
{a,0i,0j,ak | a € R* =R\ {0}}.

Example 9.8. By restricting the set of elements of the orientation congruent al-
gebra OC, 4 to the set R‘%(QCM of all nonzero real multiples of its standard basis
blades, we obtain the infinite orientation congruent line loop A(OCpﬂq,R'%(ngyq).
Thus, the following set comprises the elements of the orientation congruent line
loop: A(OC,,q, R'%’gcp’q) = {a,aey,aeq,...,0e,, ae1z,0€13,...,0€12. , | @ €

R* =R\ {0}}.

The algebra Bf, with subscript Bl 4. blade algebra

The algebra B¢, with subscript BE, 4. blade algebra BOLD

The algebra OB(, with subscript OB/, 4. oriented blade algebra

The algebra OB¢, with subscript OB, 4. oriented blade algebra BOLD

The product A o B = C. Clifford algebra product

The product A B = C. blade algebra product

The product A © B = C. orientation congruent algebra product

The product A ® B = C. oriented blade algebra product

Test citation E3, pp. 462-465];

Test citation [28].

We now need another type [concept] of associator that is analogous to the asso-
ciator of an algebra. We need to discuss the associator of a nonempty set .Z C 2
that is the subset an algebra and that is

also a loop under the algebra product. A loop is a quasigroup with an identity
element.

Definition 9.9. In the theory of nonassociative algebras the associator of any
three elements, u, v, w, of an algebra 2 is usually written with a pair of enclosing
parentheses as (u, v, w) [I56] p. 13]. However, we prefer to keep parentheses for or-
dered n-tuples and so we write it the associator in operator notation as asc(u, v, w).
The associator is defined by

asc(u, v, w) = (uv)w — ulvw),
where the product of % is written as juxtaposition.

The associator is a multilinear operator. Therefore, asc(u, v, w) = (1 +1)(uv)w.
This prompts the following definition.

Definition 9.10. For any algebra 20 and any set .2 such that @ C . C 2, that is a
loop (a quasigroup with an identity) under the algebra product (but not necessarily
a subalgebra) we call any function nap: .3 — Z, from the set of triples (u,v,w)
of elements in .Z to the integers, a null associator predictor for £ if and only if

asc(u, v, w) = (1 - (—1)“ap(“’”’“’)) (uv)w

for all (u,v,w) € £3.
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Some examples of a set .Z C 2 that is a loop under the algebra product include,
+2%", the negative extension of some set of basis blades for the orientation con-
gruent algebra OC, 4, or, Z, the set of all decomposable multivectors or blades in
OCp.q-

In any algebra 2 the associator of a triple asc(u,v,w) is null if and only if
nap; (u, v, w) is even for some null associator predictor nap;. Two null associator
predictors for .Z, nap; and nap,, are equivalent if and only if nap,(u,v,w) =
nap, (u,v,w) mod 2 for all (u,v,w) € £3.

Generally, in the sequel we employ the notation asc to symbolize the associator
exclusively for the orientation congruent algebra. Also, in the sequel we employ the
notation nap for a specific null associator predictor, that is defined below, for the
OC algebra, namely the standard null associator predictor.

Definition 9.11. Let Z be the set of decomposable multivectors or blades and let
N be the set of natural numbers including 0. Then the symbol 7¥(e) represents the
grade of operator V: 2 — N which gives the degree of a decomposable multivector
in AV™

Definition 9.12. The symbol N represents the meet operator.

Theorem 9.13. In an orientation congruent algebra OC,p 4 a triple of blades (A, B, C)
has a null associator if and only if the following null associator predictor is even:

(9.1) (W(A NC) +v(A) V(C)) (7(A NB)+7v(BN C))
+9(ANC)Y(B) (W(A) + W(C)) .

Proof. A lot of tedious algebraic manipulation of sign factor functions that is left
to the reader or the reader’s symbolic computer algebra system. 0

Theorem 9.14. In an orientation congruent algebra OC, 4 the following expression
is the restriction the standard null associator predictor to all triples, (A, Bs,Ct),
of homogeneous multivectors with subscripts indicating their grades we obtain this
equation:

(9.2) (W(A NC) +v(A) V(C)) (7(A NB)+7v(BN C))
+9(ANC)Y(B) (W(A) + W(C)) .

Proof. A lot of tedious algebraic manipulation of sign factor functions that is left
to the reader or the reader’s symbolic computer algebra system. 0

Note the symmetry in this expression. The A and C' at the extreme positions of
the associator always appear in balanced pairs that commute.

9.3. Indeterminate Counit Equations. Some introductory remarks.
Theorem 9.15. For all blades A € Cl), 4

(9.3a) AoI=A_1 and
(9.3b) IocA=1L A.



EXTERIOR CALCULUS IN THE IMAGE OF ODD FORMS 129

Proof. We prove only Equation ([@3al), the second equation follows by symmetry.

If A is the scalar o, Equation ([@3al) follows immediately from the definition of
the left Clifford contraction in Equation (&2l of Definition of Section

Now assume A is an r-blade for 1 < r < n. Since both A and I are blades
we may factor them into Clifford products of mutually anticommuting vectors.
We first factor A into r such vectors: A = a, o---o0ay oa;. Then we factor
I so that its first r vectors are the same as those for A, but in reversed order:
I=ajoaso...0a,0bjo0...0b,,_,_10b,_,.. If A = ol for some scalar o, we must
include this scalar in the factorization of A. However, to simplify the following
derivations we do not include a.

Using these factorizations we obtain the following expression for the left side of

Equation (@3al)
Aol=(a,0o---oazoaj)o(ajoazo...oa,objo...ob, . j0b, ;).

Now we can successively “consume” pairs of vectors at the junction of these de-
compositions of A and I by repeatedly Clifford multiplying them to yield scalars.
Eventually the left side of Equation [I3al) is reduced to (aj?a3?---a%?)bjo...o0
bnfrfl o bnfr-

Next, we work on the right side of Equation (@3al). Since the vectors in the
decomposition of A anticommute we may replace the Clifford products in this
decomposition with outer products to yield: A = a,. A--- Aay Aaj;. The same
transformation applies to I. By repeatedly applying the expression from Table
in Section [ for the left Clifford contraction of an outer product with a multivector
and then the expression from Table B4l in Section B for the left Clifford contraction
of a vector with an outer product we generate the following series of equivalent
expressions:

A I=(a.AN---NagAhazAaj) a(aghasAhasA...Na, AbiA...Ab,_,)
=(a,AN---NazgAag) Jla; u(agAagANasA...ANa, Aby A...Ab,_,)]
=(a,A---ANagAag) Jfaf?(ax AagA...Aa, AbiA...Ab,_,)]
=(a,A---ANag) J{ay J[af?(ag AazA...Aa. AbiA...Ab, )]}
=(a, A---ANag) J[(a;%a3?)(az A...Aa. Aby A...Ab,_,)]
= (a7?az? - a7 (b A...Ab,_,).

Since, for any vector a, a®? :=aoa, a"?:=a _Ja, and aoa = a _ a by Equation
B4 of Definition in Section B the last expression in this series is equal to the
result above for the left side of Equation (I3al). O

Theorem 9.16. For all blades A € Cl), 4

(9.4a) AoclI=A_I=Ael and
(9.4b) IcA=I_LA=TeA.
Proof. We prove only Equation ([@Zal), the second equation follows by symmetry.

The equality of the Clifford product and the left Clifford contraction was proved in
Theorem above. The equality of the left Clifford contraction and the Clifford
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fat dot inner product follows from their definitions by Equations &2l and &3]) of
Definition in Section B O

We immediately have the following theorem as the orientation congruent ana-
logue of Theorem

Theorem 9.17. For all blades A € OC, 4

(9.5a) AeO=A"0O=A®08 and
(9.5b) Oo0oA=0OrA=0eA.

Proof. These equations follow from substituting the sigma definitions of the ori-
entation congruent product, the left and right orientation congruent contractions,
and the orientation congruent fat dot inner product in Theorem above. 0

Theorem 9.18. For all basis blades e; € A"

(9.6) Ge, = (1" el
Proof.
DeI =0 0oer by Definitions and
=o0(Q,er)Qoey by Definition B0
=o0(0,er)Qee; since the grade of Q is n
=o(Q,er)(-1)""e; e by Harke’s Eq. (22) [84, p. 6] applied to o
=o(Q,er) (-1)"" e 0T  since the grade of T is n

" Ne 0O by Definition
1)rin=r 8 by Definitions and

Corollary 9.19. For all basis blades ey € "
(9.7) Be, = (—1)"e¥ =&?.

Proof. The proof follows from applying Definitions and and the definition
of grade involution to Theorem O
Theorem 9.20. For any orientation congruent algebra OCp , and all basis blades

e € B C (’)Cp,q

9.8) (Te,)™ = (—1)%; = Z(eF).

Proof. We only prove the equality of the left and middle expressions; the equality
of the middle and right expressions follows by symmetry.

(Qel)Iz =(Qoe)®0 by Definitions and
=(-1)""" (e;®@Q)®Q by Theorem [LIX
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By Theorem BI4] the null associator predictor for the triple (e;, @, Q) is (r +
nr)(r+mn)+rn(r+n) =r(n—1r) mod 2. Therefore, continuing the above series
of equalities by shifting the parentheses to the right side of the last expression we
have
=e;®(Qe®AO) mod 2 addition of the exponents of —1
= (—1)%; by Theorem [VIL21
O
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10. ELECTROMAGNETIC FIELD JUMP CONDITIONS

One cannot escape the feeling that these equations have an exis-
tence and intelligence of their own; that they are wiser than we are,
wiser even than their discoverers; that we get more out of them than
was originally put into them.

Heinrich Hertz on Maxwell’s equations, quoted by E.T. Bell [13] p. 16]

The usual Gibbs-Heaviside vector calculus formulation of the boundary condi-
tions of the electromagnetic fields is given by

nx(El—Eg):

0
10.1
(10-1a) nx (H; — Hy) = J,

n- (Bl - BQ) =0
n- (Dl — DQ) = Og.
Standard derivations of these results are provided in the books of Jackson [T0T]

pp. 17-22]) and Kong [IT3, pp. 25-29]. A more general derivation is given in the
book of Ingarden and Jamiotkowski [I00, p. 74].

(10.1b)

10.1. Boundary Conditions with Clifford Algebra. Jancewicz first restated
these electromagnetic boundary conditions using bivectors and exterior algebra
(under the geometric algebra name outer product) in the paper [103] pp. 183 f.].
Later, Jancewicz applied Clifford algebra to their ab initio derivation in his book
[104] pp. 81-88]. In both works he also writes the standard vector calculus equations
using field vectors decomposed into components that are tangential (subscript ¢) to
the surface and those that are normal to it (subscript n). The following equivalent
versions of the vector calculus expressions of Equations ([ILT) reproduce Equations
(5) of Jancewicz’s paper or those on page 87 of his book with slight changes in
order and symbols:

102 Ei —E»=0
(10.2a) Hy, — Hy = J, xn

By, — By, = 0
(10.2b) e

Dln — D2n = OgNN.

Jancewicz first restated these electromagnetic boundary conditions using bivec-
tors and exterior algebra (under the geometric algebra name outer product) in the
paper [103] pp. 183 f.]. Later, Jancewicz applied Clifford algebra to their ab initio
derivation in his book [I04] pp. 81-88]. In the next set of equations we apply a bold
font, prefixed subscript 2 to indicate a grade 2 even multivector as in the bivectors
2H and 2B. These notations differ from the superior lens, as in H , which Jancewicz
used in Reference [T03] pp. 183 f.], or the circumflex, as in H , which he used in
Reference [T04] pp. 81-88]. The following Clifford algebra equivalents of the vector
calculus expressions of Equations (L] reproduce the equations immediately after
Equations (5) of Jancewicz’s paper or those immediately after Figure 31 on page
87 of his book with slight changes in order and symbols:

Ei—Exy=0

(10-3a) oy, — 2Ho, = Js A
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2B1t — 2Bt =0

(10.3b) Dy, — Do, = oun.

Puska’s paper [T44], p. 14] gives the same jump conditions in an equivalent Clif-
ford algebra formulation. In the next set of equations the associativity of the
Clifford product eliminates many parentheses. We follow our general convention of
writing the Clifford product explicitly as o using a small open circle in these results
of Puska:

1 1 -
§(E1—E2)—§HO(E1—E2)OH 120

(10.4a) 1 {
§(H1 —H,) — gno (H; —Hy)on ' =noJoes
1 1 .
(10 4b) 5(B1—B2)+§HO(B1—B2)OH =0
' 1

§(D1 — Dg) + %1’10 (Dl - Dg) ] 1’1_1 = 0.

In the following reproduction of more of Puska’s results we again prefix a bold
subscript 2 to even bivectors whereas he symbolizes them with not bold, upright,
uppercase letters. Also we use a superscript dagger for the reversion operation as in
(elgg)T =(ejoeg0 e3)T = ezoezoe; = —eja3 whereas Puska uses a tilde. On page
15 of Puska’s paper [144] p. 14] we find his Equations (15) and (16) combining our
Equations[[4linto just two similar ones by introducing the bivectors 2B = Boejas
and 2H =Ho €123:

(10.5a) % (cT'E+2B) — %no (cT'E+ 2B)T on!=0

1 1
(10.5b) 3 (c_le + D) + Eno (C_le + D)T on!'=no, — ¢ 'nol.

We have divided equations ([[LTl) and () into two subgroups based on the
degrees of the differential forms which would represent the field vectors. That is,
the first subgroups, equations ([IL.Tal) and ([II4al), involve the field vectors E and H
which are equivalent to 1-forms. On the other hand, the second subgroups, equa-
tions (I0IH) and ([{04H), involve the field vectors B and D which are equivalent
to 2-forms.

An important feature of these equations is that their form differs between sub-
groups. That is, in the vector calculus expressions of equations ([[IL1]) the operator
changes from the cross product to the scalar product in moving from the first to the
second subgroup. On the other hand, in the Clifford algebra expressions of equa-
tions ([Id]) no operator changes in moving between subgroups. However, there is
a change which is less severe than that of an operator, namely, a sign change.

In contrast to both the vector calculus and Clifford algebra formulations of the
jump condition equations the one we present in this Section is completely uniform:
no operators, no signs change; only the quantities involved do. Although, these
equations are form-invariant in our theory, it is, of course, still true that those
involving the field intensities E and B are naturally homogeneous, while those
involving the field quantities D and H are naturally not so.
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10.2. Boundary Conditions with Odd Forms. In this Subsection we present
a coherent resolution of a dilemma involving the surface boundary conditions for
discontinuous odd forms representing source electromagnetic fields. For brevity, we
refer to these kinds of boundary conditions by the standard term jump conditions.
This dilemma was first reported and resolved, but incoherently, by Warnick, Sel-
fridge, and Arnold in their pioneering 1995 paper [I95, p. 332, fn.]. Later, in a
2006 paper [194, pp. 162 f.], Warnick and Russer also resolve the same dilemma.
The resolution of Reference [[94] is different than that of Reference [I95]. Unfor-
tunately, that resolution is also not coherent. For more details, also see Warnick’s
groundbreaking Ph.D. Dissertation [T93] pp. 16-18, 94-100]. Let us review the
work of these authors.

The concept of an odd differential form may be traced to an analogous tensorial
version given by Weyl in his book [T98]. Although, the related concept of outer
orientation appears at least as early as Veblen’s pioneering topology book [T90} pp.
10, 194}, and Veblen and Whitehead’s differential geometry book [T91) pp. 55 f.].
An outer orientation can be given a neat, modern definition in terms of quotient
spaces and the ordinary, inner orientation of a vector space. This is described by
Shaw in his book [I66] p. 78].

Burke, first, in the paper [33], later, in the book [34], and finally, in the two draft
papers [35] and [36], became the strongest, most recent advocate for the formulation
of electrodynamics using both even (ordinary) and odd (twisted) differential forms.
Unfortunately, William Lionel Burke died at age 55 in 1996 from a cervical fracture
that he suffered in an automobile accident. See his Wikipedia entry [I99] for more
information.

10.3. Odds and Ends. Deschamps and Ziolkowski have used Clifford algebra in
their paper |59 to express the four Maxwell equations for electrodynamics in one
relativistic four-dimensional spacetime equation. Similar to what they have done,
we may use the orientation congruent algebra to also express the jump conditions
as one relativistic four-dimensional spacetime equation:

(10.6) some equation.

Just to try out a citation: [57].
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