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DRAFT & INCOMPLETE

Abstract. Flow diagrams for the differential equations of classical electro-

magnetism have previously been published as expository tools by Tonti and

Deshamps. Electromagnetic duality, resulting from the theoretical magnetic

monopole, and constitutive duality, such as between the E and D fields, are

fundamental concepts of the theory. However, in neither the Tonti nor the De-

shamps diagram do both dualities correspond to reflection in a line or plane.

Hyperplane reflection, among all the nonidentical isometries (distance-preserving

symmetry operations) of the Euclidean plane or space, is the only one that is

both the most elementary from which the others can be composed, and also very

simple, or even simplest, to visualize. We present a new flow diagram for the dif-

ferential equations of the space-time split, (3+1)-dimensional, theory of classical

electromagnetism in arbitrary media at rest. It is drawn as a lattice of rectangu-

lar parallelepipeds to allow two reflection planes. The horizontal reflection plane

mirrors the field quantities with their electromagnetic duals; the vertical reflec-

tion plane mirrors the field quantities with their constitutive duals. As key to the

elegant symbolic expression of these symmetries, we follow Burke by using both

ordinary and twisted differential forms, possessing both inner and outer orienta-

tions, to write the equations in manifestly parity-invariant form. The previously

unnamed “Lorentz functions” and “surge subsources” are represented. We ex-

hibit Nisbet’s direct plus dual gauge theory of the Hertz and stream potentials

in this fitting arena. The origin of the diagram is briefly discussed.
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1 Introduction: Building A Symmetrical Man-

sion for Electromagnetism

In general, flow diagrams provide a graphical representation of mathematical
equations using nodes and arrows. A node represents a mathematical object;
an arrow represents any operation that can be applied to the node object from
which the arrow originates. An expression equal to a given node object is the
sum of the operations of all arrows pointing to it, as those arrows operate on
the node objects from which they originate.

The usefulness of flow diagrams in various presentations of the theory of
classical electromagnetism has been demonstrated by Tonti, Deschamps, and
many others.

Both the Tonti and Deschamps diagrams are arranged geometrically with
certain arrow directions always associated with certain operations. This con-
vention makes these two diagrams easy to interpret, although abstractly any
helter-skelter arrangement of nodes and arrows with the same labels and inci-
dences of arrows to or from nodes has exactly the same meaning. The geometric
arrangement of the arrows in the Tonti and Deschamps diagrams also induces
correspondences between geometric symmetries and physico-mathematical sym-
metries.

Two fundamental symmetries of the theory of classical electromagnetism are
electromagnetic duality and constitutive duality. The term duality implies an
involution — a transformation other than the identity that is its own inverse.
Both of these dualities are so defined.

Electromagnetic duality results from the conceptual or theoretical existence
of the magnetic monopole. On this basis theories of electromagnetism or electro-
dynamics, some of them controversial, have been constructed. Supplementing
standard electromagnetic theory with the dual field quantities used as con-
ceptual or computational aids is not controversial, although it is sometimes
disparaged. Creating a new, mixed electrodynamic theory with the dual field
quantities and particles interacting with the standard ones is very controversial.

Constitutive duality, such as between the E and D fields, occurs in the
macroscopic theory as a description of the properties of material media, but
also has a simple, linear counterpart in the microscopic theory involving only
the constants ε0 and µ0, the permittivity and permeability of the vacuum.

How are these two dualities represented geometrically in the Tonti and De-
shamps diagrams? We must answer that question in terms of the extended

Tonti and Deshamps diagrams. By “extended” we mean the natural extension
of their geometric arrangement to include all electromagnetic and constitutive
dual quantities. Unfortunately, exactly how this is to be done is clear only after
studying the new diagram and its relationship to the two existing ones. The
extension, though, does not effect the 2- or 3-dimensional character of either
diagram.

The extended Tonti diagram is 3-dimensional. Corresponding to electromag-
netic duality it exhibits inversion symmetry in a central point; corresponding to
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constitutive duality it exhibits the symmetry of a shear followed by a rotation
about a central vertical line followed by a shear opposite to the first one.

The extended Deshamps diagram is planar. Corresponding to electromag-
netic duality it exhibits reflection symmetry in a central horizontal line; corre-
sponding to constitutive duality it exhibits a permutation symmetry that might
be considered as a “local” reflection of the nodes immediately above and below
four different horizontal lines.

In neither the Tonti nor the Deshamps diagram do both dualities correspond
to reflection in a line or plane — an isometry (distance-preserving transformtion)
which is also a geometric involution, just as the two dualities are physico-math-
ematical involutions. In addition, hyperplane reflection, among all the noniden-
tical isometries of the Euclidean plane or space, is the only one that is both the
most elementary from which the others can be composed, and also very simple,
or even simplest, to visualize.

We present a new flow diagram representing the differential equations of
the space-time split, (3+1)-dimensional, theory of classical electromagnetism in
arbitrary media at rest. It is drawn as a lattice of rectangular parallelepipeds
to allow two reflection planes. The horizontal reflection plane mirrors the field
quantities with their electromagnetic duals; the vertical reflection plane mirrors
the field quantities with their constitutive duals.

The elegance of this geometric symmetry will be equalled symbolically by
following Burke in using the formalism of ordinary (inner-oriented) and twisted
(outer-oriented) differential forms to write the equations of classical electomag-
netism in manifestly parity-invariant form.

For example, the 3-form of electric charge density is twisted (has an outer
orientation); thus, in manifestly parity-invariant form, it carries a positive or
negative sign. Its electomagnetic dual, the 3-form of magnetic charge density is
ordinary (has an inner orientation); thus, in manifestly parity-invariant form,
it carries a right- or left-handed screwsense. Further, the constitutive duals are
constructed with the twisted Hodge star operator.

The new flow diagram, in addition to literally mirroring the two dualities
graphically, is more suitable for representing equations involving the Laplace-Bel-
trami ∆ and d’Alembertian ¤ operators. Although these two operators are not
explicitly shown in the new diagram, their component operators, the exterior
derivative d and the coderivative δ are shown, permitting ∆ and ¤ to have a
symmetrical composite graphical representation. This symmetry is impossible
in the extended Tonti diagram.

Among the quantities placed in the new flow diagram are the less famil-
iar Hertz “superpotentials’ and previously unnamed “surge subsources,” and
“Lorentz functions.” Altogher the new diagram represents forty-eight physical
quantities with all electromagnetic and constitutive dual pairs included.

The Tonti and Deshamps diagrams are adequate for the purposes of their
creators. But by symmetrically including the coderivative operator, and all
electromagnetic and constitutive duals of the standard field quantities the new
flow diagram may be regared as the symmetrical completion of the Tonti and
Deshamps diagrams.
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One may ask if a cycle of transformations exists taking the extended Tonti
and Deschamps diagrams and the new one into each other. Such a cycle does
exist; however, none of its transformations are isometries. The exposition of
this cycle will have to wait for a possible future publication.

While some may regard this new diagram (or the earlier two) as trivial
because they merely hang the same differential equations of electromagnetism
upon various graphical skeletons, the author believes that physico-mathematical
relationships among the field quantities of classical electromagnetism are more
easily grasped when depicted by corresponding graphical relationships.

In the sequel we use the new flow diagram to graphically illustrate

i) the potentials, Maxwell’s equations, and the equation of continuity (Figure
1)

ii) the electromagnetic dual of item i) (Figure 2)

iii) the E and B wave equations for electric sources (Figure 3)

iv) the potential wave equations for electric sources (Figure 4)

v) Nisbet’s Hertz and stream potential equations sans gauge terms (Figure
5 )

vi) Nisbet’s direct and dual guage terms for item v) (Figure 6 ).

2 Details of the New Home as Maxwell and Im-

mediate Family Move In

2.1 Graphical and Symbolic Conventions

This diagram is similar to a room occupancy chart. Several guests may be
staying in the same room (node). Also some of the rooms may have sliding
partitions to subdivide them. The rooms in this mansion are not numbered but
labelled with the names of principal occupants. The room labels are engraved
on little plaques such as bEc and bBc. Of course this does not mean that Ms.
E is always occupying room bEc, nor is she always the sole occupant, but any
resident of her room must be a very close relative of hers. In other words the
labels are conventional and do not necessarily indicate the actual contents of
a node. The relationship between a node label and its contents is idicated by
symbolic and graphical conventions.

Those conventions are ...
Arrows lying along the main diagonals of the rectangular parallelepipeds

(“diagonal arrows” for short) represent the 3-space derivative operators, the ex-
terior derivative d, and the coderivative δ. These diagonal arrows may carry a
negative sign. If a diagonal arrow is solid it represents the exterior derivative
d; if it is dashed it represents the coderivative δ. Horizontal arrows directed
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rightward represent the time partial derivative operator ∂t. These horizontal
arrows may carry a negative sign or a multiplier which is the inverse square of
the vacuum light speed c−2. A dashed right-going horizontal arrow indicates
the presence of the multiplier c−2; nondashed right-going horizontal arrows do
not carry this multiplier. Horizontal arrows directed forwards and backwards
represent the constitutive duality operator. These horizontal arrows carry no
sign or multiplier. Their fully or partially open arrowheads indicate that they
are not to be added to the sum equal to a node and formed by the operation of
the other arrows pointing to it. Instead they indicate an independent equality of
the terminating node with result of the indicated constitutive duality operator
acting on the originating node. (In general only arrows with fully filled heads
contribute to a node sum.) Those with fully open heads indicate a constitutive
duality operation involving the permittivity operator ε ∗̃; Those with half open
heads indicate a constitutive duality operation involving the permeability oper-
ator µ∗̃−1. Following Deschamps a small bar perpendicular to any arrow (and
usually placed as close to its tail as possible) indicates the operator is preceded
by a negative sign.

We use several conventions to save space inside the cramped nodes. One of
these is the indication of algebraic inversion by typographical inversion. The
unit of resistance, the Ohm, provides a familiar example of this typographical
convention. The symbol for the Ohm is Ω; a common symbol for its inverse is
f. (This symbol, though, is not standard in the SI; in the International System
of Units the the unit of conductance is the siemens, symbolized by S.)

We use Burke’s notation for the twisted Hodge star operator ∗̃. The full
notations for its forms involving premultiplication by the free space permittivity
and permeability are ε0∗̃ and µ0∗̃

−1. For economy of space, however, these will
frequently be written as ε̃0 and

˜
µ0. The inverses of these operators given in full

notation are ε−1

0
∗̃−1 and µ−1

0
∗̃; with the above typographical inversion convention

they become
˜
Ä0 and

˜
µ

0.

We write the inverse square of the vacuum light speed c−2 = ε̃0
˜
µ0 = ε0µ0

compactly as the arbitrary symbol s.

Twelve nodes of the diagram are “mixed” in that they may contain nonzero,
nongauge terms of both electrical and magnetic origin. Four familiar ones form
a rectangle at the heart of the diagram. These are bEc, bD̃c, bH̃c, and bBc.
The remaining eight less familiar nodes lie on similar rectangles displaced to the
far left and right. We have labelled the nodes of the left rectangle bΠc, bε̃ Πc,
b

˜
µΣc, and bΣc, and the nodes of the right rectangle b

˜
Ä ζ̃c, bζ̃c, bξ̃c, and b

˜
µξ̃c.

This labelling breaks the EM duality symmetry of the diagram and shows our
bias toward the actual existence of electric charge rather than the hypothetical
existence of magnetic charge. One possible symmetrical labelling, though, can
be produced by replacing two labels of the left rectangle as b

˜
µΣc→bΣc and

bΣc→b
˜
µΣc, and two of the right rectangle as bξ̃c→b

˜
µξc and b

˜
µξ̃c→bξc. A

second way to acheive symmetry for these eight nodes is by labelling them with
single symbols such as we have already done for the core nodes bEc, bD̃c, bH̃c,
and bBc.
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2.2 Units

To emphasize the differences between ordinary and twisted forms we use the
SI system of units. Constitutive duality operations taking an ordinary differen-
tial form to a twisted one will always involve a multiplication by ε0or

µ

0in SI
units.
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3 Maxwell’s Southern Cousin and Friends Visit:

The Electromagnetic Duals of the Fundamen-

tal Equations
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4 Maxwell’s Eastern Cousins Pay a Visit: The

E and B Wave Equations
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5 Some Other Passageways Among the Family’s

Rooms: The Potential Wave Equations

dD̃ = ρ̃ (5.1a)

d(ε∗̃E) = ρ̃ (5.1b)

ε−1∗̃−1d(ε∗̃E) = ε−1∗̃−1 ρ̃ (5.1c)

−δE = ε−1∗̃−1 ρ̃ (5.1d)

−δ(−dφ− ∂tA) = ε−1∗̃−1 ρ̃ (5.1e)

∆φ+ ∂tδA = ε−1∗̃−1 ρ̃ (5.1f)

∆ + c−2∂t
2φ = ε−1∗̃−1 ρ̃ (5.1g)

¤φ = ε−1∗̃−1 ρ̃ (5.1h)

dH̃ − ∂tD̃ = J̃ (5.2a)

d(µ−1∗̃B)− ∂t(ε∗̃E) = J̃ (5.2b)

µ∗̃−1d(µ−1∗̃B)− µ∗̃−1∂t(ε∗̃E) = µ∗̃−1 J̃ (5.2c)

δB − c−2∂tE = µ∗̃−1J̃ (5.2d)

δdA− c−2∂t(−dφ− ∂tA) = µ∗̃−1 J̃ (5.2e)

δdA+ c−2d∂tφ+ c−2∂t
2A = µ∗̃−1 J̃ (5.2f)

δd + dδ + c−2∂t
2A = µ∗̃−1 J̃ (5.2g)

∆ + c−2∂t
2A = µ∗̃−1 J̃ (5.2h)

¤A = µ∗̃−1 J̃ (5.2i)
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Ȧ

δ
d
A

+
d
δ
A

+
sÄ

d
A

0
+
d
A

b

˜ µ χ
c bχ

c

bε̃
φ
c bφ

c

b

˜ µ L
c

bL
c

bρ̃
c b ˜Ä

ρ̃
c

bp̃
c

b
˜µ
p̃
c

bε̃
Π
c

bΠ
c

b

˜ µ A
c

bA
c

bD̃
c

bE
c

bJ̃
c

b
˜µ
J̃
c

bζ̃
c

b ˜Ä
ζ̃
c

b

˜ µ Σ
c

bΣ
c

bT̃
c

b ˜Ä
T̃
c

bH̃
c

bB
c

bε̃
k
c

bk
c

bξ̃
c

b
˜µ
ξ̃
c

bη̃
c

b ˜Ä
η̃
c

bθ̃
c

b
˜µ
θ̃
c

bM̃
c

b ˜Ä
M̃

c

b

˜ µ g
c

bg
c

bε̃
λ
c

bλ
c

ou
t
3-
fo
rm

ou
t
3-
fo
rm

in
0-
fo
rm

in
0-
fo
rm

in
1-
fo
rm

in
1-
fo
rm

ou
t
2-
fo
rm

ou
t
2-
fo
rm

ou
t
1-
fo
rm

ou
t
1-
fo
rm

in
2-
fo
rm

in
2-
fo
rm

in
3-
fo
rm

in
3-
fo
rm

ou
t
0-
fo
rm

ou
t
0-
fo
rm

F
ig
u
re

4:
T
h
e
P
ot
en
ti
al

W
av
e
E
q
u
at
io
n
s
in

th
e
L
or
en
tz

G
au

ge
fo
r
E
le
ct
ri
c
S
ou

rc
es



Electromagnetism on an Exterior Derivative Flow Diagram 15

6 Maxwell’s Cousins from out West Come Call-

ing: The Hertz “Superpotentials” and Their

Guages

6.1 Nisbet’s Equations Written with Ordinary and Twisted
Differential Forms

−dE − Ḃ = ek = 0, dB = eg = 0 (N 2·1)

dH̃ −
˙̃
D = J̃, dD̃ = ρ̃ (N 2·2)

D̃ = ε̃0E + P̃, H̃ =

˜
µ

0B − M̃ (N 2·3)

E = −dφ− Ȧ, B = dA (N 2·4)

−δA+ c−2φ̇ = L = 0 (N 2·5)

¤φ =
˜
Ä0ρ̃+ δ

˜
Ä0P̃ (N 2·6)

¤A =
˜
µ0J̃ + δ

˜
µ0M̃ +

˜
µ0

˙̃
P (N 2·7)

¤ , ∆+ c−2∂t
2 , δd + dδ + c−2∂t

2, where (N 2·8)

c−2 , c−2 = Ä0

µ

0 = ε−1

0
µ−1

0

φ = δΠ, A = δΣ+ c−2Π̇ (N 2·9)

E = −dδΠ− c−2Π̈− δΣ̇ (N 2·10)

B = dδΣ+ c−2dΠ̇ (N 2·11)

ρ̃ = −dQ̃e, J̃ = dQ̃m +
˙̃
Qe (N 2·12)

dJ̃ + ˙̃ρ = p̃ = 0 (N 2·13)

¤Π =
˜
Ä0P̃ +

˜
Ä0Q̃e (N 2·14)

¤Σ =
˜
µ0M̃ +

˜
µ0Q̃m (N 2·15)
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E = Re − dδΠ− c−2Π̈− δΣ̇ (N 2·18)

B = −Rm + dδΣ+ c−2dΠ̇ (N 2·19)

D̃ = −Q̃e + dδε̃0Π− dε̃0Σ̇ (N 2·20)

H̃ = Q̃m − dδ

˜
µ

0Σ− c−2

˜
µ

0Σ̈ + c−2δ

˜
µ

0Π̇ (N 2·21)

¤Π =
˜
Ä0P̃ +

˜
Ä0Q̃e +Re (N 2·22)

¤Σ =
˜
µ0M̃ +

˜
µ0Q̃m +Rm (N 2·23)

g = −dRm, k = −dRe + Ṙm (N 2·24)

φ = φ0 + χ̇, A = A0 − dχ (N 3·1)

¤χ = 0 (N 3·2)

Q̃e = Q̃0

e
+ dG̃,

Q̃m = Q̃0

m
− dr̃rrg −

˙̃
G

}
(N 3·3)

Re = R0

e
− dl − L̇,

Rm = R0

m
− dL

}
(N 3·4)
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E = R0

e
− dl − L̇− dδΠ− c−2Π̈− δΣ̇ (N 3·6)

B = −R0

m
+ dL+ dδΣ+ c−2dΠ̇ (N 3·7)

D̃ = −Q̃0

e
− dG̃+ dδε̃0Π− dε̃0Σ̇ (N 3·8)

H̃ = Q̃0

m
− dr̃rrg −

˙̃
G− dδ

˜
µ

0Σ− c−2

˜
µ

0Σ̈ + c−2δ

˜
µ

0Π̇ (N 3·9)

¤Π =
˜
Ä0P̃ +

˜
Ä0Q̃

0

e
+R0

e
+ d

˜
Ä0G̃− dl − L̇ (N 3·10)

¤Σ =
˜
µ0M̃ +

˜
µ0Q̃

0

m
+R0

m
+ δ

˜
µ0r̃rrg −

˜
µ0

˙̃
G− dL (N 3·11)

Π = Π0 − drrrλ+ δΓ− Λ̇,

Σ = Σ0 + δγ − dΛ− c−2Γ̇

}
(N 3·12)

¤rrrλ = −ṙrrζ, ¤Λ = drrrζ (N 3·13)

χ = rrrζ − δΛ + c−2ṙrrλ (N 3·14)

r̃rrg = ¤

˜
µ

0γ +
˙̃

rrrξ, G̃ = ¤ε̃0Γ− dr̃rrξ (N 3·15)

l = ¤rrrλ+ ṙrrζ, L = ¤Λ− drrrζ (N 3·16)



18 Electromagnetism on an Exterior Derivative Flow Diagram

6.2 Derivations of Hertz and Stream Potential Wave Equa-
tions

−δE = −δE (6.1a)

−δ(−dδΠ− c−2Π̈− δΣ̇) = −δ(
˜
Ä0D̃ −

˜
Ä0P̃ ) (6.1b)

δdδΠ+ c−2δΠ̈ = −δ(−
˜
Ä0Q̃e −

˜
Ä0P̃ ) (6.1c)

δ¤Π = δ(
˜
Ä0Q̃e +

˜
Ä0P̃ ) (6.1d)

¤Π0 =
˜
Ä0Q̃

0

e
+
˜
Ä0P̃ (6.1e)

δB − c−2Ė = δB − c−2Ė (6.2a)

δ(dδΣ+ c−2dΠ̇)− c−2∂t(−dδΠ− c−2Π̈− δΣ̇)

= δ(
˜
µ0H̃ +

˜
µ0M̃)− c−2∂t(

˜
Ä0D̃ −

˜
Ä0P̃ )

(6.2b)

(δdδΣ+ c−2δΣ̈) + c−2∂t(δdΠ + dδΠ+ c−2Π̈)

= δ(
˜
µ0Q̃m +

˜
µ0M̃)− c−2∂t(−

˜
Ä0Q̃e −

˜
Ä0P̃ )

(6.2c)

δ¤Σ+ c−2∂t¤Π = δ(
˜
µ0Q̃m +

˜
µ0M̃) + c−2∂t(+

˜
Ä0Q̃e +

˜
Ä0P̃ )
(6.2d)

¤Σ0 =
˜
µ0Q̃

0

m
+

˜
µ0M̃ (6.2e)
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6.3 The Grand Four Panel Diagrams of Nisbet’s Gauge
Theory of the Hertz and Stream Potentials
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Figure 5(a). Derivation of the Hertz and Stream Potential Equations without Gauge Terms
(top left panel of a four page composite)
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Figure 5(b). Deriv. of Hertz & Stream Pot. Eqs. w/o Gauges
(top right panel of a four page composite)
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Fig. 5(c). Deriv. of Hertz & Stream Pot. Eqs. w/o Gauge Terms
(bottom left panel of a four page composite)
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Figure 5(d). Derivation of the Hertz and Stream Potential Equations without Gauge Terms

(bottom right panel of a four page composite)
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Figure 6(a). Derivation of the Gauge Equations for the Hertz and Stream Potentials
(top left panel of a four page composite)
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Figure 6(b). Deriv. of Gauge Eqs. for Hertz & Stream Pots.
(top right panel of a four page composite)
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Fig. 6(c). Deriv. of Gauge Eqs. for Hertz & Stream Potentials
(bottom left panel of a four page composite)
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−¤ε̃0Γ + G̃+ dr̃rrξ = 0

−¤

˜
µ

0γ + r̃rrg −
˙̃

rrrξ = 0

bε̃rrrλc

brrrλc

b

˜
µχc

bχc

bε̃φc

bφc

b

˜
µ

L c

bL c

bρ̃c

b
˜
Ä ρ̃c

b

˜
µΛc

bΛc

bε̃ Πc

bΠc

b

˜
µAc

bAc

bD̃c

bEc

bJ̃c

b
˜
µJ̃c

bε̃Γc

bΓc

b

˜
µΣc

bΣc

bT̃ c

b
˜
Ä T̃ c

bH̃c

bBc

bε̃ kc

bkc

b

˜
µγc

bγc

bη̃c

b
˜
Ä η̃c

bθ̃c

b
˜
µθ̃c

bM̃ c

b
˜
ÄM̃ c

b

˜
µgc

bgc

out 3
-form

in 0
-form

in 1
-form

out 2
-form

out 1

-form

in 2
-form

in 3

-form

out 0

-form

Figure 6(d). Derivation of the Gauge Equations for the Hertz and Stream Potentials

(bottom right panel of a four page composite)
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